Marc M Greenberg

Learn More
The C4'-oxidized abasic site (C4-AP) is produced in DNA as a result of oxidative stress. A recent report suggests that this lesion forms interstrand cross-links. Using duplexes in which C4-AP is produced from a synthetic precursor, we show that the lesion produces interstrand cross-links in which both strands are in tact and cross-links in which the C4-AP(More)
The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early(More)
The C4'-oxidized abasic site (C4-AP) is a commonly formed DNA lesion, which generates two types of interstrand cross-links (ICLs). The kinetically favored cross-link consists of two full length strands and forms reversibly and exclusively with dA. Cross-link formation is attributed to condensation of C4-AP with the N6-amino group of dA. Formation of the(More)
The formamidopyrimidines Fapy.dA and Fapy.dG are produced in DNA as a result of oxidative stress. These lesions readily epimerize in water, an unusual property for nucleosides. The equilibrium mixture slightly favors the beta-anomer, but the configurational status in DNA is unknown. The ability of endonuclease IV (Endo IV) to efficiently incise(More)
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua),(More)
The oxidatively induced DNA lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-formamidopyrimidine (FapyA) are formed abundantly in DNA of cultured cells or tissues exposed to ionizing radiation or to other free radical-generating systems. In vitro studies indicate that these lesions are miscoding, can block the progression of DNA(More)
Fapy.dG and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) are formed in DNA by hydroxyl radical damage. In order to study replication past these lesions in cells, we constructed a single-stranded shuttle vector containing the lesion in 5'-TGT and 5'-TGA sequence contexts. Replication of the modified vector in simian kidney (COS-7) cells showed that Fapy.dG(More)
Synthetic chemistry has revolutionized the understanding of many biological systems. Small compounds that act as agonists and antagonists of proteins, and occasionally as imaging probes, have contributed tremendously to the elucidation of many biological pathways. Nevertheless, the function of thousands of proteins is still elusive, and designing new(More)
5,6-Dihydro-2'-deoxyuridin-6-yl (1) was independently generated via photolysis of 3. The radical is an analogue of the major reactive species produced from thymidine upon reaction with hydroxyl radical, which is the dominant DNA-damaging agent produced by the indirect effect of gamma-radiolysis. Under aerobic conditions, the peroxyl radical (2) derived from(More)