Marc L. Pusey

Learn More
A high-resolution atomic force microscopy (AFM) study has shown that the molecular packing on the tetragonal lysozyme (110) face corresponds to only one of two possible packing arrangements, suggesting that growth layers on this face are of bimolecular height [Li et al. (1999). Acta Cryst. D55, 1023-1035]. Theoretical analyses of the packing also indicated(More)
Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the(More)
Covalent labeling of macromolecules with trace levels (<1%) of a fluorescent dye is proposed as a means to facilitate finding or detecting crystals in crystallization drops. To test the effects of labeled protein concentration on the resulting X-ray diffraction data, experiments were carried out with the model proteins insulin, ribonuclease, lysozyme and(More)
Previous extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals have shown unexpected dependencies on the supersaturation. In this study, similar growth-rate measurements were performed for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high(More)
The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by(More)
Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or(More)
The tetragonal form of hen egg-white lysozyme is the most investigated protein crystal for growth studies, but the relationship between its surface morphology and internal structure is still not well understood. One method of determining this relationship for inorganic crystals is by employing the periodic bond chain (PBC) theory of Hartman & Perdok(More)
A method for immobilizing protein crystals has been devised for determining face growth rates, and used to investigate the growth kinetics of hen egg white lysozyme crystals. Growth rates were determined at 22 degrees C in 0.1 M sodium acetate, 5% NaCl, pH 4.0, on the visually identified (110) face of tetragonal lysozyme crystals. Protein concentrations(More)
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the(More)
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals(More)