Learn More
Covalent labeling of macromolecules with trace levels (<1%) of a fluorescent dye is proposed as a means to facilitate finding or detecting crystals in crystallization drops. To test the effects of labeled protein concentration on the resulting X-ray diffraction data, experiments were carried out with the model proteins insulin, ribonuclease, lysozyme and(More)
A high-resolution atomic force microscopy (AFM) study has shown that the molecular packing on the tetragonal lysozyme (110) face corresponds to only one of two possible packing arrangements, suggesting that growth layers on this face are of bimolecular height [Li et al. (1999). Acta Cryst. D55, 1023-1035]. Theoretical analyses of the packing also indicated(More)
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals(More)
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the(More)
Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the(More)
Measurements of the macroscopic growth rates of the (101) face of tetragonal lysozyme crystals indicate an unusual dependence on the supersaturation [Forsythe et al. (1999), Acta Cryst. D55, 1005-1011] similar to that observed for the (110) face. As performed previously for the (110) face, the surface packing arrangement for the (101) face was constructed(More)
Microfluidics, or lab-on-a-chip technology, is proving to be a powerful, rapid, and efficient approach to a wide variety of bioanalytical and microscale biopreparative needs. The low materials consumption, combined with the potential for packing a large number of experiments in a few cubic centimeters, makes it an attractive technique for both initial(More)
Previous extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals have shown unexpected dependencies on the supersaturation. In this study, similar growth-rate measurements were performed for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high(More)
The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by(More)
In a classical vapor diffusion crystallization, the protein solution is mixed in a 1:1 ratio with the reservoir solution, containing one or more precipitant species, after which the two are placed in an enclosed chamber. As the vapor pressure is lower for the reservoir solution, due to its higher solute concentration, there is a net transfer of water(More)