Marc Léonard

Learn More
The fish early-life stage (FELS) test (Organisation for Economic Co-operation and Development [OECD] test guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an ongoing effort to develop efficient and cost-effective alternatives to(More)
Animal alternatives research has historically focused on human safety assessments and has only recently been extended to environmental testing. This is particularly for those assays that involve the use of fish. A number of alternatives are being pursued by the scientific community including the fish embryo toxicity (FET) test, a proposed replacement(More)
Animal alternative tests are gaining serious consideration in an array of environmental sciences, particularly as they relate to sound management of chemicals and wastewater discharges. The ILSI Health and Environmental Sciences Institute and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the(More)
Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory(More)
When addressing the use of fish for the environmental safety of chemicals and effluents, there are many opportunities for applying the principles of the 3Rs: Reduce, Refine, and Replace. The current environmental regulatory testing strategy for bioconcentration and secondary poisoning has been reviewed, and alternative approaches that provide useful(More)
Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal(More)
Transparent organisms such as fish embryos are being increasingly used for environmental toxicology studies. These studies require estimating a number of physiological parameters. These estimations may be diverse in nature and can be a challenge to automate. Among these, an example is the development of reliable and repeatable automated assays for the(More)
Early-life-stage transgenic medaka are recognized as a pertinent model by the Organisation for Economic Co-operation and Development and are noncompliant with the European definition of a laboratory animal. However, autofluorescence confounds readout of fluorescent biomarkers. The authors determined the fluorescence emission spectrum of different embryonic(More)
Studies on fish embryo models are widely developed in research. They are used in several research fields including drug discovery or environmental toxicology. In this article, we propose an entirely automated assay to detect cardiac arrest in Medaka (Oryzias latipes) based on image analysis. We propose a multi-scale pipeline based on mathematical(More)
  • 1