Marc J. B. Vreysen

Learn More
Male insects are expected to optimize their reproductive strategy according to the availability of sperm or other ejaculatory materials, and to the availability and reproductive status of females. Here, we investigated the reproductive strategy and sperm management of male and virgin female Aedes albopictus, a mosquito vector of chikungunya and dengue(More)
Reunion Island suffers from high densities of the chikungunya and dengue vector Aedes albopictus. The sterile insect technique (SIT) offers a promising strategy for mosquito-borne diseases prevention and control. For such a strategy to be effective, sterile males need to be competitive enough to fulfil their intended function by reducing wild mosquito(More)
BACKGROUND The Government of Senegal has initiated the "Projet de lutte contre les glossines dans les Niayes" to remove the trypanosomosis problem from this area in a sustainable way. Due to past failures to sustainably eradicate Glossina palpalis gambiensis from the Niayes area, controversies remain as to the best strategy implement, i.e. "eradication"(More)
BACKGROUND African animal trypanosomosis is a major obstacle to the development of more efficient and sustainable livestock production systems in West Africa. Riverine tsetse species such as Glossina palpalis gambiensis Vanderplank and Glossina tachinoides Westwood are the major vectors. A wide variety of control tactics is available to manage these(More)
Tsetse flies are the vectors of human and animal African trypanosomoses, the former a major neglected disease, and the latter considered among the greatest constraints to livestock production in sub-Saharan Africa. To date, the disease is mainly contained through the prophylactic and curative treatment of livestock with try-panocidal drugs, which is not(More)
In 1908, African animal trypanosomosis (AAT) was first reported on the island of Unguja (Zanzibar), but circumstantial evidence of its presence is reported as far back as 1880 [1]. There are no reports of the presence of human African trypano-somosis (HAT). Tsetse are vectors of trypanosomes, and Glossina austeni News-tead was only discovered in 1945 on(More)
MANY SPECIES OF TSETSE FLIES (DIPTERA: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%-5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful(More)
African animal trypanosomosis (AAT), or nagana, is widespread within the tsetse-infested belt of sub-Saharan Africa. Although a wealth of information on its occurrence and prevalence is available in the literature, synthesized and harmonized data at the regional and continental scales are lacking. To fill this gap the Food and Agriculture Organization of(More)
BACKGROUND Tsetse flies are the cyclical vectors of African trypanosomosis that constitute a major constraint to development in Africa. Their control is an important component of the integrated management of these diseases, and among the techniques available, the sterile insect technique (SIT) is the sole that is efficient at low densities. The government(More)
Tsetse flies (Genus: Glossina) are the sole cyclical vectors of African trypanosomoses. Despite their economic and public health impacts in sub-Saharan Africa, it has been decades since the latest distribution maps at the continental level were produced. The Food and Agriculture Organization of the United Nations is trying to address this shortcoming(More)