#### Filter Results:

#### Publication Year

2002

2016

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We introduce and analyze numerical methods for the treatment of inverse problems , based on an adaptive wavelet Galerkin discretization. These methods combine the theoretical advantages of the wavelet-vaguelette decomposition (WVD) in terms of optimally adapting to the unknown smoothness of the solution, together with the numerical simplicity of Galerkin… (More)

- Emmanuel Gobet, Marc Hoffmann, Markus Reiß
- 2002

We study the problem of estimating the coefficients of a diffu-−1 is constant, and asymptotics are taken as the number N of observations tends to infinity. We prove that the problem of estimating both the diffusion coefficient (the volatility) and the drift in a nonparametric setting is ill-posed: the minimax rates of convergence for Sobolev constraints and… (More)

Hawkes processes are used for modeling tick-by-tick variations of a single or of a pair of asset prices. For each asset, two counting processes (with stochastic intensities) are associated respectively with the positive and negative jumps of the price. We show that, by coupling these two intensities, one can reproduce high-frequency mean reversion structure… (More)

- ‹
- 1
- ›