Learn More
A novel analytical method to detect and characterize active pharmaceutical ingredient (API) trace crystallinity in an amorphous system using Raman microscopy and chemometric methods, namely band-target entropy minimization (BTEM) and target transformation factor analysis (TTFA) is developed. The method starts with Raman mapping measurements performed on(More)
Raman spectra of human nail clippings from various sources were collected and then deconvoluted to obtain the pure component spectra of the underlying constituents present. This blind-deconvolution was performed using a self-modeling curve resolution technique, namely band-target entropy minimization (BTEM). The aim was to simplify the complexity of the(More)
A newly developed self-modeling curve resolution method, band-target entropy minimization (BTEM), is described. This method starts with the data decomposition of a set of spectroscopic mixture data using singular value decomposition. It is followed by the transformation of the orthonormal basis vectors/loading vectors into individual pure component spectra(More)
A combination of singular value decomposition, entropy minimization, and simulated annealing was applied to a synthetic 7-species spectroscopic data set with added white noise. The pure spectra were highly overlapping. Global minima for selected objective functions were obtained for the transformation of the first seven right singular vectors. Simple(More)
A technique is demonstrated to detect DNA hybridization at low concentrations, based on Surface-Enhanced Raman Scattering (SERS) using silicon nanostructures coated with gold-silver as substrate. Standard silicon process technologies were employed to fabricate the SERS substrates featuring nanogaps with a characteristic distance of 15+/-10nm. Target DNA was(More)
The binary solution of acetic acid in CDCl(3) was studied at room pressure on the interval T = 293-313 K with a series of acetic acid concentrations up to 0.16 M. In-situ Fourier transform infrared (FTIR) spectroscopy measurements on the interval of 400-3800 cm(-1) were utilized as the analytical method to monitor the spectral changes due to(More)
An improved algorithm using minimization of entropy and spectral similarity (MESS) was tested to recover pure component spectra from in situ experimental Fourier transform infrared (FT-IR) reaction spectral data, which were collected from a homogeneous rhodium catalyzed hydroformylation of isoprene. The experimental spectra are complicated and highly(More)
Hydroformylations of cyclopentene and 3,3-dimethylbut-1-ene were performed using both Rh(4)(CO)(12) and (eta(5)-C(5)H(5))Mo(CO)(3)H as precursors in n-hexane at 298 K. Both stoichiometric and catalytic hydroformylations were conducted as well as isotopic labeling experiments. Six organometallic pure component spectra were recovered from the high-pressure(More)
The partial molar volumes, V(i), of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field(More)