Marc Dubois

  • Citations Per Year
Learn More
We demonstrate the possibility to selectively reduce insulating fluorinated graphene to conducting and semiconducting graphene by electron beam irradiation. Electron-irradiated fluorinated graphene microstructures show 7 orders of magnitude decrease in resistivity (from 1 TΩ to 100 kΩ), whereas nanostructures show a transport gap in the source-drain bias(More)
Activated carbons were prepared by the pyrolysis of coffee grounds impregnated by phosphoric acid at 450 degrees C for different impregnation ratios: 30, 60, 120 and 180 wt.%. Materials were characterized for their surface chemistry by elemental analysis, "Boehm titrations", point of zero charge measurements, Infrared spectroscopy, thermogravimetric(More)
We demonstrate the possibility to tune the electronic transport properties of graphene mono-layers and multi-layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping (VRH) in two dimensions to Efros-Shklovskii VRH.(More)
The crystal structure of the new Li(5.5)Ce(12)F(50) compound has been fully characterized by single-crystal and synchrotron powder X-ray diffraction. An accurate pseudotetragonal structure was described in the monoclinic P2(1) space group with 68 independent crystallographic sites. The Li(5.5)Ce(12)F(50) composition belongs to the(More)
Poly(dicarbon monofluoride) (C2F)n was studied by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR). The effects of physisorbed oxygen on the EPR and NMR relaxation were underlined and extrapolated to poly(carbon monofluoride) (CF)n and semi-covalent graphite fluoride prepared at room temperature. Physisorbed oxygen(More)
The conversion of (C2.5F)n fluorine-graphite intercalation compounds (GIC) into covalent graphite fluoride during a post-treatment in pure F2 gas is studied by solid-state NMR. First, a careful characterization of the starting material is performed; in particular, for the first time for fluorinated carbons, two-dimensional 19F--> 13C cross-polarization(More)
Direct fluorination was applied to wood flour in order to improve its compatibility with polymers and thus enhance the properties of wood-polymer composites. Fourier-transform infrared spectra and (19)F solid-state nuclear magnetic resonance results underlined a successful covalent grafting of fluorine atoms onto the wood chemical structure. No physical(More)
Mixed-metal inorganic fluoride, Co0.60Fe0.40F3, solid solutions are obtained through topochemical reactions of Co2FeCl(OH)6·2H2O LDH with molecular fluorine, F2, at temperatures as low as 100 °C. This solid solution possesses interesting F(•)-releasing ability, and its efficiency as a solid-state fluorinating agent is demonstrated on a commercial(More)
This work focuses on the reactivity of carbon nanodiscs and nanocones with respect to pure fluorine gas. The starting materials, as-synthesized without post-treatment, consist of a mixture of nanodiscs (approximately 70% w/w), nanocones (approximately 20% w/w) and amorphous carbons (approximately 10% w/w). In order to investigate their reactivity in pure F2(More)
Covalent functionalization through pure molecular gaseous fluorination has been applied on carbon nanofibres. Nuclear magnetic resonance and thermal gravimetric analysis investigations have been performed on fluorinated carbon nanofibres in order to determine the chemical and thermal stability of the C-F bonding. The high covalency obtained allows no(More)