Marc-David Ruepp

Learn More
Cleavage/polyadenylation of mRNAs and 3' processing of replication-dependent histone transcripts are both mediated by large complexes that share several protein components. Functional studies of these shared proteins are complicated by the cooperative binding of the individual subunits. For CstF-64, an additional difficulty is that symplekin and CstF-77(More)
BACKGROUND Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production.(More)
In spinal muscular atrophy (SMA), the leading genetic cause of early childhood death, the survival motor neuron 1 gene (SMN1) is deleted or inactivated. The nearly identical SMN2 gene has a silent mutation that impairs the utilization of exon 7 and the production of functional protein. It has been hypothesized that therapies boosting SMN2 exon 7 inclusion(More)
Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these(More)
Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological(More)
Paraquat (PQ) is a neurotoxic herbicide that induces superoxide formation. Although it is known that its toxic properties are linked to ROS production, the cellular response to PQ is still poorly understood. We reported previously that treatment with PQ induced genome-wide changes in pre-mRNA splicing. Here, we investigated the molecular mechanism(More)
Proximity-dependent trans-biotinylation by the Escherichia coli biotin ligase BirA mutant R118G (BirA*) allows stringent streptavidin affinity purification of proximal proteins. This so-called BioID method provides an alternative to the widely used co-immunoprecipitation (co-IP) to identify protein-protein interactions. Here, we used BioID, on its own and(More)
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits(More)
Export of mRNA from the nucleus is linked to proper processing and packaging into ribonucleoprotein complexes. Although several observations indicate a coupling between mRNA 3' end formation and export, it is not known how these two processes are mechanistically connected. Here, we show that a subunit of the mammalian pre-mRNA 3' end processing complex, CF(More)
Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3' end processing. The non-polyadenylated histone mRNA 3' ends are generated by a unique mechanism involving the U7 small(More)