Learn More
We present a new application of positron emission tomography ("ntPET" or "neurotransmitter PET") designed to recover temporal patterns of neurotransmitter release from dynamic data. Our approach employs an enhanced tracer kinetic model that describes uptake of a labeled dopamine D2/D3 receptor ligand in the presence of a time-varying rise and fall in(More)
Endocannabinoids and their attending cannabinoid type 1 (CB1) receptor have been implicated in animal models of post-traumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [(11)C]OMAR in(More)
A recently introduced mathematical method for extracting temporal characteristics of neurotransmitter release from dynamic positron emission tomography (PET) data was tested. The method was developed with the hope that by uncovering temporal information about neurotransmitter (nt) dynamics in PET data, researchers could shed new light on mechanisms of(More)
We previously developed a model-independent technique (non-parametric ntPET) for extracting the transient changes in neurotransmitter concentration from paired (rest & activation) PET studies with a receptor ligand. To provide support for our method, we introduced three hypotheses of validation based on work by Endres and Carson (1998 J. Cereb. Blood Flow(More)
BACKGROUND The mesolimbic dopamine (DA) system is implicated in the development and maintenance of alcohol drinking; however, the exact mechanisms by which DA regulates human alcohol consumption are unclear. This study assessed the distinct effects of alcohol-related cues and alcohol administration on striatal DA release in healthy humans. METHODS(More)
BACKGROUND A dopaminergic response to alcohol in humans has not been demonstrated consistently with positron emission tomography (PET). We hypothesized that the effect of alcohol on striatal dopamine (DA) release may be anatomically heterogeneous between subjects. Our approach was to identify voxels that exhibited alcohol-induced DA responses within the(More)
OBJECTIVES Dopamine transmission abnormalities have been implicated in the etiology of bipolar disorder (BPD). However, there is a paucity of receptor imaging studies in BPD, and little information is available about the dopamine system in BPD. Reuptake of synaptic dopamine by the dopamine transporter (DAT) is the principal mechanism regulating dopamine(More)
Low-frequency stimulation is associated with long-term depression (LTD) of synaptic efficacy in various brain structures. Like long-term potentiation (LTP), homosynaptic LTD in area CA1 of the hippocampus appears to require NMDA receptor activation, changes in postsynaptic calcium concentration and phospholipase A2 (PLA2) activation. Arachidonic acid (AA)(More)
BACKGROUND Several lines of evidence link cannabinoid (CB) type 1 (CB (1) ) receptor-mediated endogenous CB (eCB) signaling to the etiology of alcohol dependence (AD). However, to date, only peripheral measures of eCB function have been collected in living humans with AD and no human in vivo data on the potentially critical role of the brain CB (1) (More)
In the present study, we examined the KCl-induced increase in [3H] amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) binding in telencephalic synaptoneurosomes and potentiation of synaptic transmission (KLTP) in hippocampal slices during development in rats. As previously reported, KCI-induced depolarization of telencephalic synaptoneurosomes(More)