Learn More
Behavioral studies have shown that picture-plane inversion impacts face and object recognition differently, thereby suggesting face-specific processing mechanisms in the human brain. Here we used event-related potentials to investigate the time course of this behavioral inversion effect in both faces and novel objects. ERPs were recorded for 14 subjects(More)
Event-related potentials (ERPs) from 58 electrodes at standard EEG sites were recorded while 14 subjects performed a delayed-matching task on normal and inverted faces. A large and single difference between normal and inverted face processing was observed at occipito-temporal sites about 160 ms following stimulus onset, mainly in the right hemisphere (RH).(More)
Several ERP studies have shown an orienting complex, the N2/P3a, associated to the detection of stimulus novelty. Its role consists in preparing the organism to process and react to biologically prepotent stimuli. Whether this N2/P3a: (1) could be obtained with complex visual stimuli, such as with emotional facial expressions; and (2) could take part in a(More)
In order to investigate stimulus-related and task-related electrophysiological activity relevant for face processing, event-related potentials (ERPs) from 58 electrodes at standard EEG sites were recorded while subjects performed a simple visual discrimination (control) task, in addition to various face processing tasks: recognition of previously learned(More)
Behavioral studies indicate a right hemisphere advantage for processing a face as a whole and a left hemisphere superiority for processing based on face features. The present PET study identifies the anatomical localization of these effects in well-defined regions of the middle fusiform gyri of both hemispheres. The right middle fusiform gyrus, previously(More)
Scalp event-related potentials (ERPs) in humans indicate that face and object processing differ approximately 170 ms following stimulus presentation, at the point of the N170 occipitotemporal component. The N170 is delayed and enhanced to inverted faces but not to inverted objects. We tested whether this inversion effect reflects early mechanisms exclusive(More)
Neuroimaging (PET and fMRI) studies have identified a set of brain areas responding more to faces than to other object categories in the visual extrastriate cortex of humans. This network includes the middle lateral fusiform gyrus (the fusiform face area, or FFA) as well as the inferior occipital gyrus (occipital face area, OFA). The exact functions of(More)
In our previous paper we demonstrated that electrical microstimulation of the fixation area at the rostral pole of the cat superior colliculus (SC) elicits no gaze movement but, rather, transiently suppresses eye-head gaze saccades. In this paper, we investigated the more caudal region of the SC and its interaction with the fixation area. In the alert(More)
Using positron emission tomography we explored brain regions activated during the perception of face expressions, emotional voices and combined audio-visual pairs. A convergence region situated in the left lateral temporal cortex was more activated by bimodal stimuli than by either visual only or auditory only stimuli. Separate analyses for the emotions(More)
Most brain imaging studies on face perception have investigated the processing of unknown faces and addressed mainly the question of specific face processing in the human brain. The goal of this study was to highlight the effects of familiarity on the visual processing of faces. Using [15O]water 3D Positron Emission Tomography, regional cerebral blood flow(More)