Learn More
A chromosome in an individual of recently admixed ancestry resembles a mosaic of chromosomal segments, or ancestry blocks, each derived from a particular ancestral population. We consider the problem of inferring ancestry along the chromosomes in an admixed individual and thereby delineating the ancestry blocks. Using a simple population model, we infer(More)
MOTIVATION Comparing two or more complex protein mixtures using liquid chromatography mass spectrometry (LC-MS) requires multiple analysis steps to locate and quantitate natural peptides within a single experiment and to align and normalize findings across multiple experiments. RESULTS We describe msInspect, an open-source application comprising(More)
For most of the world, human genome structure at a population level is shaped by interplay between ancient geographic isolation and more recent demographic shifts, factors that are captured by the concepts of biogeographic ancestry and admixture, respectively. The ancestry of non-admixed individuals can often be traced to a specific population in a precise(More)
BACKGROUND To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by(More)
Variation in human skin and eye color is substantial and especially apparent in admixed populations, yet the underlying genetic architecture is poorly understood because most genome-wide studies are based on individuals of European ancestry. We study pigmentary variation in 699 individuals from Cape Verde, where extensive West African/European admixture has(More)
Importance Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. Objective To apply deep learning(More)
The Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA1) is expressed in latently EBV-infected B lymphocytes that persist for life in healthy virus carriers, and is the only viral protein regularly detected in all malignancies associated with EBV. Major histocompatibility complex (MHC) class I-restricted, EBNA1-specific cytotoxic T lymphocyte (CTL)(More)
Progress in understanding the molecular pathogenesis of human myeloproliferative disorders (MPDs) has led to guidelines incorporating genetic assays with histopathology during diagnosis. Advances in flow cytometry have made it possible to simultaneously measure cell type and signaling abnormalities arising as a consequence of genetic pathologies. Using flow(More)
Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel(More)
Integrated liquid-chromatography mass-spectrometry (LC-MS) is becoming a widely used approach for quantifying the protein composition of complex samples. The output of the LC-MS system measures the intensity of a peptide with a specific mass-charge ratio and retention time. In the last few years, this technology has been used to compare complex biological(More)