Learn More
Motors generating mechanical force, powered by the hydrolysis of ATP, translocate double-stranded DNA into preformed capsids (proheads) of bacterial viruses and certain animal viruses. Here we describe the motor that packages the double-stranded DNA of the Bacillus subtilis bacteriophage phi29 into a precursor capsid. We determined the structure of the(More)
The 2-haloalkanoic acid dehalogenase (HAD) family, which contains both carbon and phosphoryl transferases, is one of the largest known enzyme superfamilies. HAD members conserve an alpha,beta-core domain that frames the four-loop active-site platform. Each loop contributes one or more catalytic groups, which function in mediating the core chemistry (i.e.,(More)
A method has been developed for three-dimensional image reconstruction of symmetry-mismatched components in tailed phages. Although the method described here addresses the specific case where differing symmetry axes are coincident, the method is more generally applicable, for instance, to the reconstruction of images of viral particles that deviate from(More)
Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and phosphate using Mg(II) as cofactor. The reaction proceeds via a novel bicovalent catalytic mechanism in which an active-site nucleophile abstracts the phosphoryl group from the Schiff-base intermediate formed from Lys53 and(More)
Three-dimensional structures of the double-stranded DNA bacteriophage phi29 scaffolding protein (gp7) before and after prohead assembly have been determined at resolutions of 2.2 and 2.8 A, respectively. Both structures are dimers that resemble arrows, with a four-helix bundle composing the arrowhead and a coiled coil forming the tail. The structural(More)
Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) to form orthophosphate and acetaldehyde. The reaction proceeds via a Schiff-base intermediate formed between Lys-53 and the Pald carbonyl. The x-ray crystal structures of the wild-type phosphonatase complexed with Mg(II) alone or with(More)
The recent paper by Guasch et al. 1 describing the structure of the f29 bacteriophage head – tail con-nector at 2.1 A ˚ resolution (PDB code 1h5w), makes reference to the original 3.2 A ˚ resolution structure (PDB code 1fou) published by Simpson et al. 2 and used by Guasch et al. to solve the 1h5w structure by molecular replacement. The Guasch paper states(More)
The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed(More)
Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage 29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix(More)
Scale-invariant feature transform (SIFT) algorithms are used in the field of computer vision to detect and describe local features in images. They implement an approach that has many characteristics in common with neuronal responses in primate vision. Although SIFT-based approaches have been primarily implemented for analysis of two-dimensional images, they(More)