Marc Antoine Ceruso

  • Citations Per Year
Learn More
The dynamics of collective protein motions derived from Molecular Dynamics simulations have been studied for two small model proteins: initiation factor I and the B1 domain of Protein G. First, we compared the structural fluctuations, obtained by local harmonic approximations in different energy minima, with the ones revealed by large scale molecular(More)
The dynamic events that underlie the nucleotide exchange process for the Galpha subunit of transducin (Galpha(t)) were studied with nanosecond time-scale molecular dynamics simulations. The modeled systems include the active and inactive forms of the wild-type Galpha(t) and three of its mutants (GDP-bound form only): F332A, A322S, and Q326A that are known(More)
Proline residues in the helical segments of soluble and transmembrane proteins have received special attention from both a structural and functional perspective. A feature of these helices is the structural distortion termed "proline-kink", which has been associated with the presence of the proline residue. However, a recent report on the yeast heat-shock(More)
The structural organization of the B1 domain of streptococcal protein G (PGA) has been probed using molecular dynamics simulations, with a particular emphasis on the role of the solvent exposed Ile6 residue. In addition to the native protein (WT-PGA), three single-mutants (I6G-PGA, I6F-PGA, and I6T-PGA), one double-mutant (I6T,T53G-PGA), and three isolated(More)
Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the(More)
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp.(More)
Glutamic acid E134 in rhodopsin is part of a highly conserved triad, D(E)RY, located near the cytoplasmic lipid/water interface in transmembrane helix 3 of G protein-coupled receptors (GPCRs). A large body of experimental evidence suggests that the protonation of E134 plays a role in the mechanism of activation of rhodopsin and other GPCRs as well. For E134(More)
In this work, we investigated the structural and dynamic consequences of two substitutions, P58A and G36P, located in two different solvent-exposed loops of cytochrome c551. The results show that both mutations affect regions that are distant from the site of mutation. Here, the two loops appear to be dynamically coupled to each other, because the(More)
The analysis of the dynamic behavior of enzymes is fundamental to structural biology. A direct relationship between protein flexibility and biological function has been shown for bovine pancreatic ribonuclease (RNase A) (Rasmussen et al., Nature 1992;357:423-424). More recently, crystallographic studies have shown that functional motions in RNase A involve(More)
In this article we present a quantitative evaluation of the convergence of the conformational coordinates of proteins, obtained by the Essential Dynamics method. Using a detailed analysis of long molecular dynamics trajectories in combination with a statistical assessment of the significance of the measured convergence, we obtained that simulations of a few(More)