Marc A van Bochove

  • Citations Per Year
Learn More
We have studied the characteristics of archetypal model systems for bimolecular nucleophilic substitution at phosphorus (SN2@P) and, for comparison, at carbon (SN2@C) and silicon (SN2@Si) centers. In our studies, we applied the generalized gradient approximation (GGA) of density functional theory (DFT) at the OLYP/TZ2P level. Our model systems cover(More)
Pentacoordinate phosphorus species play a key role in organic and biological processes. Yet, their nature is still not fully understood, in particular, whether they are stable, intermediate transition complexes (TC) or labile transition states (TS). Through systematic, theoretical analyses of elementary S(N)2@C, S(N)2@Si, and S(N)2@P reactions, we show how(More)
We have studied the mechanism of S(N)2@P reactions in the model systems X(-) + PMe(2)Y and X(-) + POR(2)Y (with R=Me, OH, OMe; and X, Y=Cl, OH, MeO) using density functional theory at OLYP/TZ2P. Our main purpose is to analyze the nature of the Walden inversion in our model nucleophilic substitution reactions. Walden inversion is well-known to proceed, in(More)
  • 1