Marc A. Deshusses

Learn More
Two protozoan species as well as an uncharacterized protozoan consortium were added to a toluene-degrading biotrickling filter to investigate protozoan predation as a means of biomass control. Wet biomass formation in 23.6-L reactors over a 77-day period was reduced from 13.875 kg in a control biotrickling filter to 11.795 kg in a biotrickling filter(More)
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as(More)
Recent studies in the area of biological waste air treatment in biofilters have addressed fundamental key issues such as microbial dynamics, microscopical characterization of the process culture and oxygen and nutrient limitations. The results from these studies have provided a deeper insight into the overall biofiltration process. In the coming years, such(More)
An novel diffusion reaction model for the determination of both the steady-state and transient-state behavior of biofilters for waste air biotreatment is developed and discussed. The model considers the reactor to comprise finite sections, for each of which transient mass balances are established and solved by digital simulation. The elimination of methyl(More)
In the work reported here, selected aspects of the dynamic behavior of biofilters for waste air treatment have been investigated. Emphasis was placed on transient state elimination of mixtures of methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) vapors and on explanation of the observed phenomena. The initial startup, the response of the biofilter(More)
Biotrickling filters for air pollution control are expected to encounter fluctuating conditions or periods without pollutant supply. In the present study, we investigated the effect of pollutant starvation in bench-scale biotrickling filters treating toluene. The experimental protocol consisted of starving biotrickling filters under various conditions: with(More)
Removal of hydrogen sulfide from waste and energy-rich gases is required, not only because of environmental health and safety reasons, but also because of operational reasons if such gases have to be used for energy generation. A biotrickling filter for the removal of ultra-high concentrations of H2S from oxygen-poor gases is proposed and studied in this(More)
Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen(More)
Mercury is a potent neurotoxin for humans, particularly if the metal is in the form of methylmercury. Mercury is widely distributed in aquatic ecosystems as a result of anthropogenic activities and natural earth processes. A first step toward bioaccumulation of methylmercury in aquatic food webs is the methylation of inorganic forms of the metal, a process(More)