Marc A. Antonyak

Learn More
Tumor progression involves the ability of cancer cells to communicate with each other and with neighboring normal cells in their microenvironment. Microvesicles (MV) derived from human cancer cells have received a good deal of attention because of their ability to participate in the horizontal transfer of signaling proteins between cancer cells and to(More)
Epidermal growth factor (EGF) exerts pleiotropic effects during oncogenesis, including the stimulation of cell migration and invasiveness. Although a number of traditional signaling proteins (e.g. Ras and Rho GTPases) have been implicated in EGF-stimulated cancer cell migration, less is known about the identity of those proteins functioning further(More)
Caused by a polyglutamine expansion in the huntingtin protein, Huntington's disease leads to striatal degeneration via the transcriptional dysregulation of a number of genes, including those involved in mitochondrial biogenesis. Here we show that transglutaminase 2, which is upregulated in HD, exacerbates transcriptional dysregulation by acting as a(More)
The ERK pathway is typically associated with activation of the EGF receptor and has been shown to play a major role in promoting several tumor phenotypes. An analogous signaling module, the JNK pathway, has not been shown to be consistently activated by the EGF receptor but is instead more uniformly stimulated by cellular stresses and cytokines. The(More)
Vesicular structures called microvesicles (MVs) that are shed from the surfaces of cancer cells are capable of transferring oncogenic cargo to recipient cancer cells, as well as to normal cells, sending mitogenic signals that greatly enhance tumor growth. Because MVs are stable in the circulation, they also may have a key role in secondary colonization and(More)
The conditional knockout of the small GTPase Cdc42 from neuroepithelial (NE) and radial glial (RG) cells in the mouse telencephalon has been shown to have a significant impact on brain development by causing these neural progenitor cells to detach from the apical/ventricular surface and to lose their cell identity. This has been attributed to the(More)
Retinoic acid (RA) and its various synthetic analogs affect mammalian cell growth, differentiation, and apoptosis. Whereas treatment of the human leukemia cell line HL60 with RA results in cellular differentiation, addition of the synthetic retinoid, N-(4-hydroxyphenyl) retinamide (HPR), induces HL60 cells to undergo apoptosis. Moreover, pretreatment of(More)
Epidermal growth factor receptor (EGF) variant type III (EGFRvIII) is a constitutively active, naturally occurring mutation of the EGF receptor that is found in many types of human tumors. When overexpressed in NIH3T3 fibroblasts, EGFRvIII induces transformation by enhancing cell growth and reducing apoptosis. Analysis of downstream signaling pathways has(More)
Tissue transglutaminase (TGase) is involved in the regulation of several biological events including cellular differentiation and apoptosis. The expression and activation of TGase are up-regulated in response to retinoic acid (RA), leading to the protection of several cell lines against N-(4-hydroxyphenyl)retinamide (HPR)-induced apoptosis. The(More)
Tissue transglutaminase (TGase) exhibits both a GTP binding/hydrolytic capability and an enzymatic transamidation activity. Increases in TGase expression and activation often occur in response to stimuli that promote cellular differentiation and apoptosis, yet the signaling mechanisms used by these stimuli to regulate TGase expression and activation and the(More)