María del Pilar Gomez

Learn More
Calcium is thought to be essential for adaptation of sensory receptor cells. However, the transduction cascade of hyperpolarizing, ciliary photoreceptors of the scallop does not use IP3-mediated Ca release, and the light-sensitive conductance is not measurably permeable to Ca2+. Therefore, two typical mechanisms that couple the light response to [Ca]i(More)
Previous studies have demonstrated that brief fasting augments and refeeding a complete diet diminishes the breakdown of myofibrillar proteins in rat skeletal muscle. The purpose of the present study was to determine which dietary component(s) was responsible for this effect and to determine the role of insulin and amino acids. Myofibrillar proteolysis was(More)
In microvillar photoreceptors the pivotal role of phospholipase C in light transduction is undisputed, but previous attempts to account for the photoresponse solely in terms of downstream products of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis have proved wanting. In other systems PIP2 has been shown to possess signaling functions of its own,(More)
Visual excitation in rhabdomeric photoreceptors is thought to be mediated by activation of a light-regulated phospholipase C (PLC) and the consequent hydrolysis of phosphatidylinositol bisphosphate. Whereas much attention has been devoted to inositol trisphosphate (IP3) production and intracellular Ca2+ release, little is known about the possible role of(More)
The two fundamental lineages of photoreceptor cells, microvillar and ciliary, were long thought to be a prerogative of invertebrate and vertebrate organisms, respectively. However evidence of their ancient origin, preceding the divergence of these two branches of metazoa, suggests instead that they should be ubiquitously distributed. Melanopsin-expressing(More)
The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca(2+) and Mg(2+) that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being(More)
abstract The hyperpolarizing receptor potential of ciliary photoreceptors of scallop and other mollusks is mediated by a cGMP-activated K conductance; these cells also express a transient potassium current triggered by depolarization. During steady illumination, the outward currents elicited by voltage steps lose their decay kinetics. One interesting(More)
abstract The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca 2 ϩ and Mg 2 ϩ that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude , the potency(More)
1. Neuronlike differentiation of Y-79 retinoblastoma was chemically induced in vitro, by plating the cells onto a poly-D-lysine and laminin substrate. The changes in voltage-dependent conductances after 48-72 h were examined with the whole-cell tight-seal and the perforated-patch recording techniques. 2. Although outward currents carried by potassium ions(More)
1. Whole-cell and perforated-patch tight-seal recording techniques were used to characterize the voltage-dependent membrane conductances of the Y-79 cells, a human retinoblastoma line composed of pluripotential retinal precursor cells. 2. Membrane resistance and capacitance were measured under current clamp, yielding approximate average values of 1.8 G(More)