Learn More
The two neuronal populations that have been typically investigated in the septum use acetylcholine and GABA as neurotransmitters. The existence of noncholinergic, non-GABAergic, most likely glutamatergic septal neurons has recently been reported. However, their morphological characteristics, numbers, distribution, and connectivity have not been determined.(More)
A series of experiments was carried out testing the hypothesis that the septal region decreases the hippocampal susceptibility to hyperexcitability states through theta rhythm generation. Medial septal neurons were simultaneously recorded with hippocampal field potentials to investigate the septo-hippocampal function in the pilocarpine model of chronic(More)
Alzheimer's disease (AD) is a devastating disorder that leads to memory loss and dementia. Neurodegeneration of cholinergic neurons in the septum and other basal forebrain areas is evident in early stages of AD. Glutamatergic neurons are also affected early in AD. In these stages, amyloid-β-peptide (Aβ) plaques are present in the hippocampus and other(More)
The septal region of the basal forebrain plays a critical role modulating hippocampal excitability and functional states. Septal circuits may also play a role in controlling abnormal hippocampal hyperexcitability in epilepsy. Both lateral and medial septal neurons are targets of hippocampal axons. Since the hippocampus is an important epileptogenic area in(More)
The medial septal region (medial septum and diagonal band of Broca, MS/DB) controls hippocampal excitability and synaptic plasticity. MS/DB cholinergic neurons degenerate early in Alzheimer's disease (AD). The presence of MS/DB glutamatergic neurons that project to the hippocampus and are vulnerable to Aβ suggests that excitotoxicity plays a role in AD(More)
The septal region of the brain consists of a heterogeneous population of GABAergic neurons that play an important role in the generation of hippocampal theta rhythms. While GABAergic neurons employ two isoforms of the enzyme glutamic acid decarboxylase (GAD) for the synthesis of GABA, distribution of GAD isoforms has not been investigated in the septum.(More)
Degeneration of septal neurons in Alzheimer's disease (AD) results in abnormal information processing at cortical circuits and consequent brain dysfunction. The septum modulates the activity of hippocampal and cortical circuits and is crucial to the initiation and occurrence of oscillatory activities such as the hippocampal theta rhythm. Previous studies(More)
Slow firing septal neurons modulate hippocampal and neocortical functions. Electrophysiologically, it is unclear whether slow firing neurons belong to a homogeneous neuronal population. To address this issue, whole-cell patch recordings and neuronal reconstructions were performed on rat brain slices containing the medial septum/diagonal band complex(More)
l-Phenylalanine ammonia-lyase (PAL, EC from Rhodosporidium toruloides was utilized to remove l-phenylalanine (l-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, l-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of l-Phe was extracted, analyzed at λ = 290 nm, and used(More)
Alzheimer's disease (AD) is a progressive disorder of the brain that leads to memory loss, dementia, and death. Several lines of evidence suggest that the accumulation of amyloid-β (Aβ) peptides may trigger the dysfunction and degeneration observed in the AD brain. The basal forebrain, including the septal region, which regulates the excitability of the(More)
  • 1