María Sol Kruse

Learn More
Glutamate, by activating N-methyl-d-aspartate (NMDA) receptors, alters the balance between dopamine D1 and D2 receptor signaling, but the mechanism responsible for this effect has not been known. We report here, using immunocytochemistry of primary cultures of rat neostriatal neurons, that activation of NMDA receptors recruits D1 receptors from the interior(More)
Despite the tremendous importance of D1 and NMDA receptors to cognition (working memory, executive functions) and synaptic plasticity in the prefrontal cortex (PFC), little is known about the molecular mechanisms underlying D1-NMDA receptors interactions in this brain area. Here, we show that D1 receptors and the NMDA receptor co-localize in single(More)
Short-term regulation of sodium metabolism is dependent on the modulation of the activity of sodium transporters by first and second messengers. In understanding diseases associated with sodium retention, it is necessary to identify the coupling between these messengers. We have examined whether dopamine, an important first messenger in tubular cells,(More)
Gestational diabetes (GD) alters normal fetal development and is related to a diabetogenic effect in the progeny. Liver X receptors (LXRs) are considered to be potential drug targets for the regulation, treatment, or prevention of diabetes. The aim of this study was to evaluate early and late changes of LXR in the hippocampus and hypothalamus of the male(More)
Renal dopamine1 receptor (D1R) can be recruited from intracellular compartments to the plasma membrane by D1R agonists and endogenous dopamine. This study examines the role of the cytoskeleton for renal D1R recruitment. The studies were performed in LLCPK-1 cells that have the capacity to form dopamine from L-dopa. In approximately 50% of the cells treated(More)
Liver X receptor (LXR) α and β are nuclear receptors that are crucial for the regulation of carbohydrate and lipid metabolism. Activation of LXRs in the brain facilitates cholesterol clearance and improves cognitive deficits, thus they are considered as promising drug targets to treat diseases such as atherosclerosis and Alzheimer's disease. Nevertheless,(More)
The precision by which sodium balance is regulated suggests an intricate interaction between modulatory factors released from intra- and extrarenal sources. Intrarenally produced dopamine has a central role in this interactive network. Dopamine, produced in renal tubular cells acts as an autocrine and paracrine factor to inhibit the activity of(More)
Cellular and subcellular organization and distribution of actin filaments have been studied with various techniques. The use of fluorescence photo-oxidation combined with phalloidin conjugates with eosin has allowed the examination of the precise cellular and subcellular location of F-actin. Correlative fluorescence light microscopy and transmission(More)
Allopregnanolone (A) and pregnanolone (P) are able to modify neural activities acting through the GABAA receptor complex. This capacity makes them useful as anticonvulsant, anxiolytic, or anti-stress compounds. In this study, the performance of seven synthetic steroids (SS) analogous of A or P containing an intramolecular oxygen bridge was evaluated using(More)
Neuroactive steroids, like allopregnanolone (A) and pregnanolone (P), bind to specifics sites on the GABAA receptor complex and modulate receptor function. They are capable to inhibit or stimulate the binding of GABAA receptor-specific ligands, like t-butyl-bicyclophosphorothionate, flunitrazepam and muscimol. We have previously characterized a set of(More)