María Rodríguez Martínez

Learn More
Biological signaling systems produce an output, such as the level of a phosphorylated protein, in response to defined input signals. The output level as a function of the input level is called the system's input-output relation. One may ask whether this input-output relation is sensitive to changes in the concentrations of the system's components, such as(More)
We introduce an approach for the quantitative assessment of the connectivity in neuronal cultures, based on the statistical mechanics of percolation on a graph. This allows us to monitor the development of the culture and to see the emergence of connectivity in the network. The culture becomes fully connected at a time equivalent to the expected time of(More)
Cooperative effects in neural networks appear because a neuron fires only if a minimal number m of its inputs are excited. The multiple inputs requirement leads to a percolation model termed quorum percolation. The connectivity undergoes a phase transition as m grows, from a network–spanning cluster at low m to a set of disconnected clusters above a(More)
Single-cell experiments of simple regulatory networks can markedly differ from cell population experiments. Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such oscillations may appear(More)
Mature B-cell exit from germinal centers is controlled by a transcriptional regulatory module that integrates antigen and T-cell signals and, ultimately, leads to terminal differentiation into memory B cells or plasma cells. Despite a compact structure, the module dynamics are highly complex because of the presence of several feedback loops and(More)
  • 1