María R. Aburto

Learn More
Autophagy is a highly regulated program of self-degradation of the cytosolic constituents that has key roles during early development and in adult cell growth and homeostasis. To investigate the role of autophagy in otic neurogenesis, we studied the expression of autophagy genes in early stages of chicken (Gallus gallus) inner ear development and the(More)
BACKGROUND Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I) plays a(More)
BACKGROUND Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in(More)
Autophagy is an evolutionarily conserved catabolic process by which cells degrade their own components through the lysosomal machinery. In physiological conditions, the mechanism is tightly regulated and contributes to maintain a balance between synthesis and degradation in cells undergoing intense metabolic activities. Autophagy is associated with major(More)
Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2(More)
This is a review of the biological processes and the main signaling pathways required to generate the different otic cell types, with particular emphasis on the actions of insulin-like growth factor I. The sensory organs responsible of hearing and balance have a common embryonic origin in the otic placode. Lineages of neural, sensory, and support cells are(More)
Autophagy is a conserved catabolic process that results in the lysosomal degradation of cell components. During development, autophagy is associated with tissue and organ remodeling, and under physiological conditions it is tightly regulated as it plays a housekeeping role in removing misfolded proteins and damaged organelles. The vertebrate inner ear is a(More)
  • 1