María Pilar García Guerreiro

Learn More
Transposable elements (TEs), by their capacity of moving and inducing mutations in the genome, are considered important drivers of species evolution. The successful invasions of TEs in genomes, despite their mutational properties, are an apparent paradox. TEs' transposition is usually strongly regulated to low value, but in some cases these elements can(More)
Hybridization between species is a genomic instability factor involved in increasing mutation rate and new chromosomal rearrangements. Evidence of a relationship between interspecific hybridization and transposable element mobilization has been reported in different organisms, but most studies are usually performed with particular TEs and do not discuss the(More)
We have analysed by in situ hybridization the insertion site polymorphism of the copia, mdg1, mdg3, and P transposable elements in diploid genomes of wild males from a natural population of Drosophila melanogaster. The values of observed average degree of individual heterozygosity for all elements except mdg3 deviate statistically from the values expected(More)
The insertion site polymorphism of the copia, mdg1, mdg3, gypsy, and P transposable elements was analysed by in situ hybridization to the polytene chromosomes in genomes of males from a natural population of Drosophila melanogaster. Parameters of various theoretical models of the population biology of transposable elements were estimated from our data, and(More)
Previous work on transposable element distribution in colonizing populations of Drosophila buzzatii revealed a high frequency of occupancy in several chromosomal sites. Two explanatory hypotheses were advanced: the founder hypothesis, by which founder genetic drift was responsible, and the unstable hypothesis that assigns this unusual distribution to bursts(More)
The behaviour of the retrotransposons copia and mdg1 was analysed in hybrids between Drosophila melanogaster and D. simulans. Females of a highly inbred line of D. melanogaster were crossed with D. simulans males from three natural populations. The insertion site profiles for the two elements were determined in F1 hybrid larvae by in situ hybridization to(More)
BACKGROUND Transposable elements (TEs) constitute an important source of genetic variability owing to their jumping and regulatory properties, and are considered to drive species evolution. Several factors that are able to induce TE transposition in genomes have been documented (for example environmental stress and inter- and intra-specific crosses) but in(More)
BACKGROUND Transposable elements (TEs) constitute a substantial amount of all eukaryotic genomes. They induce an important proportion of deleterious mutations by insertion into genes or gene regulatory regions. However, their mutational capabilities are not always adverse but can contribute to the genetic diversity and evolution of organisms. Knowledge of(More)
A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse(More)
Transposable elements (TEs), repeated mobile sequences, are ubiquitous in the eukaryotic kingdom. Their mobilizing capacity confers on them a high mutagenic potential, which must be strongly regulated to guarantee genome stability. In the Drosophila germline, a small RNA-mediated silencing system, the piRNA (Piwi-interacting RNA) pathway, is the main(More)