Learn More
The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that(More)
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive(More)
Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes(More)
The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the(More)
The translocation of the microtubule-organizing center (MTOC) toward the nascent immune synapse (IS) is an early step in lymphocyte activation initiated by T cell receptor (TCR) signaling. The molecular mechanisms that control the physical movement of the lymphocyte MTOC remain largely unknown. We have studied the role of the dynein-dynactin complex, a(More)
Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms(More)
Conditions resulting from loss of cellular homeostasis, including oxidative stress, inflammation, protein aggregation, endoplasmic reticulum stress, metabolic stress, and perturbation of mitochondrial function, are common to many pathological disorders and contribute to aging. Cells face these stress situations by engaging quality control mechanisms aimed(More)
In this work, the role of HDAC6, a type II histone deacetylase with tubulin deacetylase activity, in lymphocyte polarity, motility, and transmigration was explored. HDAC6 was localized at dynamic subcellular structures as leading lamellipodia and the uropod in migrating T-cells. However, HDAC6 activity did not appear to be involved in the polarity of(More)
The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and antigen-presenting cells (APCs) has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological(More)
Antigen-specific cognate interaction of T lymphocytes with antigen-presenting cells (APCs) drives major morphological and functional changes in T cells, including actin rearrangements at the immune synapse (IS) formed at the cell-cell contact area. Here we show, using cell lines as well as primary cells, that clathrin, a protein involved in endocytic(More)