María-Laura Gutiérrez

Learn More
Gluconeogenic flux exceeds glycolytic flux at the hexose-phosphate steps when measured in extracts of kidney cortex from well-fed rats. Addition of AMP and/or fructose 2,6-bisphosphate to the assay medium partially eradicates the difference. Using principles developed by Kacser, H., and Burns, J. A. ((1973) in Rate Control of Biological Processes (Davies,(More)
For decades now, it is well established that chronic myeloid leukemia (CML) is a hematopoietic stem cell(HPC) disorder. However, it remains to be determined whether BCR-ABL1 gene rearrangement occurs in a HPC or at an earlier stem cell and whether the degree of involvement of hematopoiesis by the BCR-ABL1 fusion gene relates to the response to therapy.(More)
The activity of phosphofructokinase purified from rat kidney cortex has been assayed at two different pH values. At pH 7 the enzyme showed cooperativity for the binding of fructose 6-phosphate (Fru-6-P) and a strong allosteric inhibition by ATP. When the assays were done at pH 8 hyperbolic kinetics were observed for both substrates, a smaller inhibition by(More)
1. The native rat-kidney cortex Fructose-1,6-BPase is differentially regulated by Mg2+ and Mn2+. 2. Mg2+ binding to the enzyme is hyperbolic and large concentrations of the cation are non-inhibitory. 3. Mn2+ produces a 10-fold rise in Vmax higher than Mg2+. [Mn2+]0.5 is much larger than [Mg2+]0.5. At elevated [Mn2+] inhibition is observed. 4. Mg2+ and Mn2+(More)
1. The native rat-kidney cortex Fructose-1,6-bisphosphatase is differentially regulated by adenine nucleotides in the presence of divalent cations. 2. Binding of AMP and ADP to the enzyme is co-operative. The inhibition by both nucleotides show an uncompetitive mechanism AMP being the most efficient inhibitor. 3. Mg2+ decreases the inhibition produced by(More)
  • 1