María José Quintero

Learn More
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline.(More)
Genes encoding elements of four amino acid permeases were identified by insertional inactivation of ORFs from the genomic sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 whose putative products are homologous to amino acid permease proteins from other bacteria. A transport system for neutral amino acids and histidine and a transport system(More)
BACKGROUND Saccharomyces cerevisiae is widely utilized in basic research as a model eukaryotic organism and in biotechnology as a host for heterologous protein production. Both activities demand the use of highly regulated systems, able to provide accurate control of gene expression in functional analysis, and timely recombinant protein synthesis during(More)
Saccharomyces cerevisiae is frequently used in biotechnology, including fermentative processes in food production, heterologous protein production and high throughput developments for biomedicine. Accurate expression of selected genes is essential for all these areas. Systems that can be regulated are particularly useful because they allow controlling the(More)
RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription(More)
  • 1