Learn More
Functional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental(More)
MOTIVATION Multi-series time-course microarray experiments are useful approaches for exploring biological processes. In this type of experiments, the researcher is frequently interested in studying gene expression changes along time and in evaluating trend differences between the various experimental groups. The large amount of data, multiplicity of(More)
As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to(More)
MOTIVATION Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured(More)
MOTIVATION The widespread adoption of RNA-seq to quantitatively measure gene expression has increased the scope of sequencing experimental designs to include time-course experiments. maSigPro is an R package specifically suited for the analysis of time-course gene expression data, which was developed originally for microarrays and hence was limited in its(More)
MOTIVATION Time-course microarray experiments study the progress of gene expression along time across one or several experimental conditions. Most developed analysis methods focus on the clustering or the differential expression analysis of genes and do not integrate functional information. The assessment of the functional aspects of time-course(More)
Serial transcriptomics experiments investigate the dynamics of gene expression changes associated with a quantitative variable such as time or dosage. The statistical analysis of these data implies the study of global and gene-specific expression trends, the identification of significant serial changes, the comparison of expression profiles and the(More)
The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of(More)
Transcriptomic profiling experiments that aim to the identification of responsive genes in specific biological conditions are commonly set up under defined experimental designs that try to assess the effects of factors and their interactions on gene expression. Data from these controlled experiments, however, may also contain sources of unwanted noise that(More)
Description maSigPro is a regression based approach to find genes for which there are significant gene expression profile differences between experimental groups in time course microar-ray and RNA-Seq experiments. Index 40 average.rows Average rows by match and index Description average.rows matches rownames of a matrix to a match vector and performs(More)