María José Mansilla

Learn More
DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental(More)
OBJECTIVE Interferon-beta (IFNβ) has demonstrated beneficial effects reducing disease activity in multiple sclerosis (MS) patients, but a relatively large proportion of patients do not respond to treatment. Here we aimed to investigate the roles of the Toll-like receptor 4 (TLR4) and the type I IFN pathways in the response to IFNβ in MS patients. METHODS(More)
Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the(More)
Notch is a family of receptors involved in the differentiation of several tissues, including the central nervous system and the immune system. One of the Notch ligands, delta-like 4 (Dll4), has been implicated in the differentiation of Th1 cells and the development of Th17 responses, which are involved in the pathogenesis of experimental autoimmune(More)
Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may(More)
Inducible heat shock protein (HSP)70 (HSP70-1A and HSP70-1B proteins) is a chaperone responsible for assisting proper protein folding. Following stress conditions, HSP70 is highly up-regulated to mediate cytoprotective functions. In addition, HSP70 is able to trigger innate and adaptive immune responses that promote the immune recognition of antigens and to(More)
BACKGROUND Treatment with tolerogenic dendritic cells (TolDC) is a promising, cell-based strategy to regulate autoimmune diseases such as multiple sclerosis (MS) in an antigen-specific way. This technique involves the use of TolDC from MS patients cultured in the presence of vitamin D(3) (VitD3) and pulsed with myelin peptides to induce a stable(More)
Experimental autoimmune encephalomyelitis (EAE) constitutes a paradigm of antigen (Ag)-specific T cell driven autoimmune diseases. In this study, we transferred bone marrow cells (BMCs) expressing an autoantigen (autoAg), the peptide 40-55 of the myelin oligodendrocytic glycoprotein (MOG(40-55)), to induce preventive and therapeutic immune tolerance in a(More)
Tolerogenic dendritic cells (tolDC) have been postulated as a potent immunoregulatory therapy for autoimmune diseases such as multiple sclerosis (MS). In a previous study, we demonstrated that the administration of antigen-specific vitamin D3 (vitD3) tolDC in mice showing clinical signs of experimental autoimmune encephalomyelitis (EAE; the animal model of(More)
Previous work by our group showed that transferring bone marrow cells transduced with an autoantigen into nonmyeloablated mice with experimental autoimmune encephalomyelitis induced immune tolerance and improved symptoms of the disease. Because this effect occurred in the absence of molecular chimerism, we hypothesized that the cells responsible did not(More)