María-José Hidalgo

Learn More
This paper describes a mathematical tool for local identifiability analysis that can easily be applied to high-order state-space nonlinear systems and implemented in simulators with a discrete-time approach. The methodology is based on the recursive numerical evaluation of a reduced information matrix during the simulation of a calibration experiment and in(More)
We present an application of the ACL2 theorem prover to reason about rewrite systems theory. We describe the formalization and representation aspects of our work using the first-order, quantifier-free logic of ACL2 and we sketch some of the main points of the proof effort. First, we present a formalization of abstract reduction systems and then we show how(More)
The Ontology Web Language (OWL) is a language used for the Semantic Web. OWL is based on Description Logics (DLs), a family of logical formalisms for representing and reasoning about conceptual and terminological knowledge. Among these, the logic ALC is a ground DL used in many practical cases. Moreover, the Semantic Web appears as a new field for the(More)
We present a case study using ACL2 to verify a nontrivial algorithm that uses efficient data structures. The algorithm receives as input two first-order terms, and it returns a most general unifier of these terms if they are unifiable, failure otherwise. The verified implementation stores terms as directed acyclic graphs by means of a pointer structure. Its(More)
Higman’s lemma is an important result in infinitary combinatorics, which has been formalized in several theorem provers. In this paper we present a formalization and proof of Higman’s Lemma in the ACL2 theorem prover. Our formalization is based on a proof by Murthy and Russell, where the key termination argument is justified by the multiset relation induced(More)
Dickson’s Lemma is the main result needed to prove the termination of Buchberger’s algorithm for computing Gröbner basis of polynomial ideals. In this case study, we present a formal proof of Dickson’s Lemma using the ACL2 system. Due to the limited expressiveness of the ACL2 logic, the classical non-constructive proof of this result cannot be done in ACL2.(More)
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is(More)
We present in this paper an application of the ACL2 system to generate and reason about propositional satisfiability provers. For that purpose, we develop a framework in which we define a generic S AT-prover based on transformation rules, and we formalize this generic framework in the ACL2 logic, carrying out a formal proof of its termination, soundness,(More)