Learn More
Cell death induced by 6-hydroxydopamine (6-OHDA) is thought to be caused by reactive oxygen species (ROS) derived from 6-OHDA autooxidation and by a possible direct effect of 6-OHDA on the mitochondrial respiratory chain. However, the process has not been totally clarified. In rat primary mesencephalic cultures, we observed a significant increase in(More)
Striatal neurons which are immunoreactive (ir) to aromatic L-amino-acid decarboxylase (AADC) or tyrosine hydrodroxylase (TH) may play a role in the decarboxylation of L-DOPA to dopamine (DA) in advanced stages of Parkinson's disease (PD). However, the functional significance of these neurons and the mechanisms responsible for their induction remain to be(More)
Angiotensin II (AII) plays a major role in the progression of inflammation and NADPH-derived oxidative stress (OS) in several tissues. The brain possesses a local angiotensin system, and OS and inflammation are key factors in the progression of Parkinson's disease. In rat mesencephalic cultures, AII increased 6-OHDA-induced dopaminergic (DA) cell death,(More)
Neonatal destruction of the nigrostrial dopaminergic (DA) system with 6-hydroxydopamine leads to serotonergic (5-HT) hyperinnervation of the striatum. However, it is not clear whether this occurs in adult animals. We investigated whether serotonergic sprouting occurs in adult mice subjected to bilateral lesion of the DA system by(More)
Glial cell line-derived neurotrophic factor (GDNF) has potent trophic action on fetal dopaminergic neurons. We have used a double immunocytochemical approach with antibodies that recognize GDNF and tyroxine hydroxylase (TH) or the phosphoprotein DARPP-32, to study the developmental pattern of their interactions in the rat striatum and in intrastriatal(More)
The results of several in vitro studies have shown that cysteine prodrugs, particularly N-acetylcysteine, are effective antioxidants that increase the survival of dopaminergic neurons. N-acetylcysteine can be systemically administered to deliver cysteine to the brain and is of potential use for providing neuroprotection in the treatment of Parkinson's(More)
The neurotoxin MPTP reproduces most of the biochemical and pathological hallmarks of Parkinson's disease. In addition to reactive oxygen species (ROS) generated as a consequence of mitochondrial complex I inhibition, microglial NADPH-derived ROS play major roles in the toxicity of MPTP. However, the exact mechanism regulating this microglial response(More)
Neonatal destruction of the nigrostriatal dopaminergic system leads to serotonergic hyperinnervation of the striatum. However, it is not clear whether this occurs in adult animals. We investigated whether serotonergic sprouting occurs in adult animals, and also studied the effects of prior or subsequent implantation of dopamine-rich intrastriatal grafts.(More)
The basal ganglia have a local renin-angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of(More)
The possible interaction between brain hypoperfusion related to aging and/or vascular disease, vascular parkinsonism and Parkinson’s disease, as well as the possible contribution of aging-related chronic brain hypoperfusion in the development or severity of Parkinson’s disease are largely unknown. We used a rat model of chronic cerebral hypoperfusion to(More)