Learn More
A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for(More)
SUMMARY With the evolution of high-performance computing towards heterogeneous, massively parallel systems, parallel applications have developed new checkpoint and restart necessities. Whether due to a failure in the execution or to a migration of the application processes to different machines, checkpointing tools must be able to operate in heterogeneous(More)
The growing complexity in computer system hierarchies due to the increase in the number of cores per processor, levels of cache (some of them shared) and the number of processors per node, as well as the high-speed interconnects, demands the use of new optimization techniques and libraries that take advantage of their features. In this paper Servet, a suite(More)
The Gene Ontology Consortium (GOC) is a major bioinformatics project that provides structured controlled vocabularies to classify gene product function and location. GOC members create annotations to gene products using the Gene Ontology (GO) vocabularies, thus providing an extensive, publicly available resource. The GO and its annotations to gene products(More)
DNA polymerase mu (Polmu) is a family X member implicated in DNA repair, with template-directed and terminal transferase (template-independent) activities. It has been proposed that the terminal transferase activity of Polmu can be specifically required during non-homologous end joining (NHEJ) to create or increase complementarity of DNA ends. By(More)
Human DNA polymerase mu (Polμ), a family X member involved in DNA repair, has both template-directed and terminal transferase (template-independent) activities. In addition to their ability to incorporate untemplated nucleotides, another similarity between Polµ and terminal deoxynucleotidyl transferase (TdT) is their promiscuity in using ribonucleotides(More)
Introduction Prior to the ''genomic era,'' when the acquisition of DNA sequence involved significant labor and expense, the sequenc-ing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an The Community Page is a forum for organizations and societies to(More)
Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3' single-stranded overhangs and trans-polymerization using one 3' end as primer and the other as template, to minimize sequence loss.(More)
SUMMARY This paper presents CPPC (Controller/Pre-compiler for Portable Checkpointing), a checkpointing tool designed for heterogeneous clusters and Grid infrastructures through the use of portable protocols, portable checkpoint files and portable code. It works at variable level being user-directed, thus generating small checkpoint files. It allows parallel(More)