María I Alonso

Learn More
Early in development, the behavior of neuroepithelial cells is controlled by several factors, which act in a developmentally regulated manner. Diffusible factors are secreted locally by the neuroepithelium itself, although other nearby structures may also be involved. Evidence suggests a physiological role for the cerebrospinal fluid in the development of(More)
Foetal cerebro-spinal fluid (CSF) has a very high protein concentration when compared to adult CSF, and in many species five major protein fractions have been described. However, the protein concentration and composition in CSF during early developmental stages remains largely unknown. Our results show that in the earliest stages (18 to 30 H.H.) of chick(More)
During early stages of brain development, neuroepithelial stem cells undergo intense proliferation as neurogenesis begins. Fibroblast growth factor 2 (FGF2) has been involved in the regulation of these processes, and although it has been suggested that they work in an autocrine-paracrine mode, there is no general agreement on this because the behavior of(More)
Early in development, the behavior of neuroepithelial cells is controlled by several factors acting in a developmentally regulated manner. Recently it has been shown that diffusible factors contained within embryonic cerebrospinal fluid (CSF) promote neuroepithelial cell survival, proliferation, and neurogenesis in mesencephalic explants lacking any known(More)
Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a(More)
Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein(More)
Previous studies of the early development of the neural tube have shown the existence of an intraneural fluid, which causes a positive pressure inside this primordium, and seems to play a key role in the early development of the central nervous system. In the present study we investigated the composition and synthesis of this intraneural fluid. By using a(More)
The expansive force generated by the positive pressure of the neural tube fluid confined inside the brain vesicles has been shown to be a key factor during the earliest stages of brain morphogenesis and development of chick embryos. In a previous study, we demonstrated the existence of an intracavity extracellular matrix rich in condroitin sulfate in this(More)
Formation of the otocyst from the otic placode appears to differ from invagination of other cup-shaped organ primordia. It is known that the cellular cytoskeleton plays a limited role in otic placode invagination, whilst the extracellular matrix underlying the otic primordium intervenes in the folding process. In this study we have analysed the role of the(More)
INTRODUCTION There is a nondeveloped neurogenic potential in the adult mammalian brain, which could be the basis for neuroregenerative strategies. Many research efforts have been made to understand the control mechanisms which regulate the transition from a neural precursor to a neuron in the adult brain. Embryonic cerebrospinal fluid (CSF) is a complex(More)