María Esperanza Cerdán

Learn More
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse(More)
BACKGROUND In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned(More)
The transcriptome of Saccharomyces cerevisiae was screened using the high-density membrane hybridization method, under aerobic and hypoxic conditions, in wild-type and mutant backgrounds obtained by the disruption of the genes encoding the regulatory proteins Hap1, Rox1 and the Srb10 and Rox3 subunits of RNA polymerase II holoenzyme. None of the mutations(More)
Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of(More)
Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S(More)
In Saccharomyces cerevisiae, adaptation to hypoxia/anaerobiosis requires the transcriptional induction or derepression of multiple genes organized in regulons controlled by specific transcriptional regulators. Ixr1p is a transcriptional regulatory factor that causes aerobic repression of several hypoxic genes (COX5B, TIR1, and HEM13) and also the activation(More)
Recent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular(More)
BACKGROUND The beta-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for(More)
Here, we present the draft genome sequence of Kluyveromyces marxianus CCT 7735 (UFV-3), including the eight chromosomes and the mitochondrial genomic sequences.
Several regulatory circuits related to important functions, like membrane excitation, immunoresponse, replication, control of the cell cycle and differentiation, among others, cause an increase in intracellular calcium level that finally has a consequence upon transcription of specific genes. The sequencing of the whole genome of eukaryotic cells enables(More)