María Engracia Gómez

Learn More
To meet the demand for more powerful high-performance shared-memory servers, multiprocessor systems must incorporate efficient and scalable cache coherence protocols, such as those based on directory caches. However, the limited directory cache size of the increasingly larger systems may cause frequent evictions of directory entries and, consequently,(More)
Clusters of PCs have become very popular to build high performance computers. These machines use commodity PCs linked by a high speed interconnect. Routing is one of the most important design issues of interconnection networks. Adaptive routing usually better balances network traffic, thus allowing the network to obtain a higher throughput. However,(More)
In this paper we present a methodology to design fault-tolerant routing algorithms for regular direct interconnection networks. It supports fully adaptive routing, does not degrade performance in the absence of faults, and supports a reasonably large number of faults without significantly degrading performance. The methodology is mainly based on the(More)
As the number of cores increases in both incoming and future chip multiprocessors, coherence protocols must address novel hardware structures in order to scale in terms of performance, power, and area. It is well known that most blocks accessed by parallel applications are private (i.e., accessed by a single core). These blocks present different directory(More)
Most of past evaluations of fat-trees for on-chip interconnection networks rely on oversimplifying or even irrealistic architecture and traffic pattern assumptions, and very few layout analyses are available to relieve practical feasibility concerns in nanoscale technologies. This work aims at providing an in-depth assessment of physical synthesis(More)