María Del Carmen Morán

Learn More
The rapidly rising demand for therapeutic grade DNA molecules requires associated improvements in encapsulation and delivery technologies. One of the challenges for the efficient intracellular delivery of therapeutic biomolecules after their cell internalization by endocytosis is to manipulate the non-productive trafficking from endosomes to lysosomes,(More)
The effect of two arginine-based cationic surfactants, arginine N-lauroyl amide dihydrochloride and arginine O-lauroyl ester dihydrochloride, upon dipalmitoylphosphatidylcholine liposomes, is addressed in this work. Some aspects concerning the synthesis of these surfactants are also presented in some detail. Differential scanning calorimetry, as well as(More)
Effects of the addition of a cationic amino acid-based synthetic amphiphile, arginine N-lauroyl amide dihydrochloride (ALA), to a lipid-based transfection formulation have been investigated. It is shown that the inclusion of ALA results in a substantial enhancement of the transfection capability of lipoplexes prepared with liposomes of(More)
Surfactants with the cationic functionality based on an amino acid structure have been used to prepare novel biocompatible devices for the controlled encapsulation and release of DNA. We report here the formation of DNA gel particles mixing DNA (either single- (ssDNA) or double-stranded (dsDNA)) with two different single-chain amino acid-based surfactants:(More)
Oil-in-water nanoemulsions are increasingly being used as delivery systems for encapsulating lipophilic components in functional food, personal care and pharmaceutical products. In the current study, we developed a multimodal platform to carry hydrophobic indomethacin or magnetic nanoparticles, or both. As a consequence, this platform has great potential(More)
Phenothiazine derivatives are non-antibiotics with antimicrobial, fungistatic and fungicidal effects. We exposed to a high energy UV laser beam phenothiazines solutions in water at 20mg/mL concentration to increase antibacterial activity of resulting mixtures. Compared to previous results obtained on bacteria, more research is needed about UV laser(More)
Cationic nanovesicles have attracted considerable interest as effective carriers to improve the delivery of biologically active molecules into and through the skin. In this study, lipid-based nanovesicles containing three different cationic lysine-based surfactants were designed for topical administration. We used representative skin cell lines and in vitro(More)
The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic(More)
Mixtures of two cationic proteins were used to prepare protein-DNA gel particles, employing associative phase separation and interfacial diffusion (Morán et al., 2009a). By mixing the two proteins, we have obtained particles that displayed higher loading efficiency and loading capacity values than those obtained in single-protein systems. However, nothing(More)
The nanostructure of DNA with different cationic surfactant has been studied in order to elucidate the detailed arrangement concerning the position of DNA and surfactant domains in the complexes. Also, the orientation of the DNA cylinders in the thin films of the complexes was investigated. Attention was directed on the preparation methods of the complexes(More)