Learn More
In the present study we analyzed mesenteric vascular reactivity of chronic nitric oxide (NO)-deficient hypertensive rats (NW-nitro-L-Arginine Methyl Ester, L-NAME, 50 mg/kg/day, oral, 3 weeks). Perfusion pressure changes in response to cumulative additions of methoxamine and KCl were significantly increased in the mesenteric vessels of the L-NAME-treated as(More)
1. Hyporesponsiveness to vasoconstrictors is a characteristic abnormality of liver diseases of uncertain origin. In the present study, we have evaluated the involvement of protein kinase C (PKC) in the reduced pressor response to methoxamine (MTX) of a rat model of portal hypertension induced by partial portal vein ligation (PVL). Experiments were performed(More)
Nitric oxide (NO) has diverse physiological and pathophysiological effects. The roles of NO in the renal and cardiac dysfunction found in cirrhosis are reviewed. In the kidneys of experimental animals with cirrhosis, several lines of evidence speak in favour of an enhanced production of NO, through the activation of both endothelial constitutive and(More)
Appropriate nephron function is dependent on the intrarenal arrangement of blood vessels. The preferred and primary means to study the architecture of intrarenal circulation has been by filling it with opaque substances such as india ink, radio-opaque contrast material, or various polymers for study by light or scanning electron microscopy. With such(More)
Recent work indicates that nitric oxide (NO) plays an important role in the systemic and renal alterations of cirrhosis. In the present study, we have evaluated whether the inducible NO synthase (iNOS) isoform participates in the enhanced renal and systemic NO production of a rat model of cirrhosis. In vitro and in vivo experiments were performed in rats(More)
Chronically infusing a subpressor dose of angiotensin (Ang) II increases blood pressure via poorly defined mechanisms. We found that this hypertensive response is accompanied by increased oxidant stress and is prevented by blocking endothelin (ET) receptors. Thus, we now tested whether blocking oxidant stress decreases both blood pressure and ET levels. We(More)
1. The role of nitric oxide as mediator of the vascular alterations present in different models of experimental liver cirrhosis is controversial. In the present study, we evaluated the role of nitric oxide and that of the endothelium in the response to phenylephrine and acetylcholine of isolated aortic rings from chronic bile duct-ligated (29 days) rats and(More)
The mechanisms that mediate hyporesponsiveness to vasoconstrictors in liver cirrhosis are not completely established. In the present study we have explored the role of NO and potassium channels by studying the pressor response to methoxamine in rats with carbon tetrachloride-induced cirrhosis with ascites. Experiments were performed in the isolated and(More)
The role of nitric oxide and prostaglandins in the control of rat renal papillary blood flow has been studied in anesthetized Munich-Wistar rats by use of laser Doppler flowmeter. Acute administration of N omega-nitro-L-arginine methyl ester (L-NAME) 10 mg/kg IV (n=8) increased mean arterial pressure by 27.8 +/- 3.6%, decreased papillary blood flow by 39.4(More)
Nitric oxide (NO) is a vasodilator substance controlling renal papillary blood flow (PBF) in the rat. In this study we have evaluated the role of AT1 angiotensin II receptors as modulators of the whole kidney and papillary vasoconstrictor effects induced by the acute or chronic inhibition of NO synthesis. Experiments have been performed in anesthetized,(More)