Learn More
AIMS The wide use of yeast inoculum for wine fermentations permit the spreading of commercial Saccharomyces strains in wine areas all over the world. To study the impact of this practice on the autochthonous yeast populations it is necessary to have tools that permit the evaluation of the geographical origin of native isolates and differentiate them from(More)
Oenococcus oeni is the most important lactic acid bacteria of the winemaking process involved in malolactic fermentation. Most O. oeni strains are able to catabolyze arginine via the arginine deiminase (ADI) pathway. The arcR, A, B, C, D1, and D2 cluster of O. oeni bacteria has been characterized. Here, we completed the ADI locus sequence. Downstream of(More)
Saccharomyces cerevisiae is the main microorganism responsible for wine alcoholic fermentation. The oenological phenotypes resulting from fermentation, such as the production of acetic acid, glycerol, and residual sugar concentration are regulated by multiple genes and vary quantitatively between different strain backgrounds. With the aim of identifying the(More)
The presence of Brettanomyces bruxellensis has been correlated with an increase of phenolic aromas in wine. The production of these aromas results from the metabolization of cinnamic acids, present in the wine, to their ethyl derivatives. Hence, the participation of two enzymes has been proposed: a p-coumarate decarboxylase (CD) and a vinylphenol reductase(More)
A recombinant wine yeast strain has been constructed expressing the gene coding for beta-(1,4)-endoxylanase from Aspergillus nidulans under the control of the yeast actin gene promoter. The resulting recombinant strain is able to secrete active xylanase enzyme into the culture medium. Wines obtained by microvinification with the control and the recombinant(More)
AIMS To study genomic and phenotypic changes in wine yeasts produced in short time periods analysing yeast strains possibly derived from commercial strains recently dispersed. METHODS AND RESULTS We conducted a genomic and phenotypic comparison between the commercial yeast strain EC1118 and two novel strains (LV CB and L-957) isolated from different wine(More)
AIMS The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. METHODS AND RESULTS Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous(More)
The yeast Saccharomyces cerevisiae is the main microorganism responsible for wine fermentation and its development influences the quality of wine. A problem affecting these types of fermentations, generating important losses in this industry, are the slow or stuck fermentations which may result from low nitrogen availability in the must. Therefore, several(More)
The effect of using mixed cultures of non-Saccharomyces and Saccharomyces cerevisiae yeasts in the physicochemical and sensory qualities of the wines were analyzed in this study. Based on growth curves, sugar consumption and glycerol production in synthetic must, Candida membranifaciens L1805 was selected from a group of four Candidas spp. isolates from(More)