Learn More
A sensitive approach based on electrospray ionization tandem mass spectrometry has been employed to profile membrane lipid molecular species in Arabidopsis undergoing cold and freezing stresses. Freezing at a sublethal temperature induced a decline in many molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol(More)
The phospholipase D (PLD) family in higher plants is composed of multiple members, and each of the Arabidopsis PLDs characterized displays distinguishable properties in activity regulation and/or lipid preferences. The molecular and biochemical heterogeneities of the plant PLDs play important roles in the timing, location, and amount of phosphatidic acid(More)
Lipid profiling is a targeted metabolomics platform that provides a comprehensive analysis of lipid species with high sensitivity. Profiling based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides quantitative data and is adaptable to high throughput analyses. Here we report the profiling of 140 apparent molecular species of polar(More)
We determined the role of Phospholipase Dalpha1 (PLDalpha1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldalpha1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells(More)
Phosphorus is an essential macronutrient that often limits plant growth and development. Under phosphorus-limited conditions, plants undergo substantial alterations in membrane lipid composition to cope with phosphorus deficiency. To characterize the changes in lipid species and to identify enzymes involved in plant response to phosphorus starvation, 140(More)
Abietane diterpenoids are major constituents of conifer resins that have important industrial and medicinal applications. However, their function in plants is poorly understood. Here we show that dehydroabietinal (DA), an abietane diterpenoid, is an activator of systemic acquired resistance (SAR), which is an inducible defense mechanism that is activated in(More)
Freezing injury is a major environmental limitation on the productivity and geographical distribution of plants. Here we show that freezing tolerance can be manipulated in Arabidopsis thaliana by genetic alteration of the gene encoding phospholipase Dδ (PLDδ), which is involved in membrane lipid hydrolysis and cell signaling. Genetic knockout of the plasma(More)
Diacyglycerol (DAG) is an important class of cellular lipid messengers, but its function in plants remains elusive. Here, we show that knockout of the Arabidopsis thaliana nonspecific phospholipase C (NPC4) results in a decrease in DAG levels and compromises plant response to abscisic acid (ABA) and hyperosmotic stresses. NPC4 hydrolyzes various(More)
Pathogen infection of higher plants often induces rapid production of phosphatidic acid (PA) and changes in lipid profiles, but the enzymatic basis and the function of the lipid change in pathogen-plant interactions are not well understood. Infection of phospholipase D β1 (PLDβ1)-deficient plants by Pseudomonas syringae tomato pv DC3000 (Pst DC30000)(More)
Yanyan Zhang,a,1,2 Huiying Zhu,a,1 Qun Zhang,a,1 Maoyin Li,b,c,1 Min Yan,a Rong Wang,a Liling Wang,a Ruth Welti,d Wenhua Zhang,a,3 and Xuemin Wangb,c a College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China b Department of Biology, University of(More)