Learn More
Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and(More)
Most word representation methods assume that each word owns a single semantic vector. This is usually problematic because lexical ambiguity is ubiquitous, which is also the problem to be resolved by word sense disambiguation. In this paper, we present a unified model for joint word sense representation and disambiguation, which will assign distinct(More)
Previous methods of distributed Gibbs sampling for LDA run into either memory or communication bottlenecks. To improve scalability, we propose four strategies: <i>data placement</i>, <i>pipeline processing</i>, <i>word bundling</i>, and <i>priority-based scheduling</i>. Experiments show that our strategies significantly reduce the unparallelizable(More)
Representation learning of knowledge bases (KBs) aims to embed both entities and relations into a low-dimensional space. Most existing methods only consider direct relations in representation learning. We argue that multiple-step relation paths also contain rich inference patterns between entities, and propose a path-based representation learning model.(More)
Representation learning has shown its effectiveness in many tasks such as image classification and text mining. Network representation learning aims at learning distributed vector representation for each vertex in a network, which is also increasingly recognized as an important aspect for network analysis. Most network representation learning methods(More)
Distant supervised relation extraction has been widely used to find novel relational facts from text. However, distant supervision inevitably accompanies with the wrong labelling problem, and these noisy data will substantially hurt the performance of relation extraction. To alleviate this issue, we propose a sentence-level attention-based model for(More)
Keyphrases are widely used as a brief summary of documents. Since manual assignment is time-consuming, various unsupervised ranking methods based on importance scores are proposed for keyphrase extraction. In practice, the keyphrases of a document should not only be statistically important in the document , but also have a good coverage of the document.(More)
Existing graph-based ranking methods for keyphrase extraction compute a single importance score for each word via a single random walk. Motivated by the fact that both documents and words can be represented by a mixture of semantic topics, we propose to decompose traditional random walk into multiple random walks specific to various topics. We thus build a(More)
We propose minimum risk training for end-to-end neural machine translation. Unlike conventional maximum likelihood estimation, minimum risk training is capable of optimizing model parameters directly with respect to evaluation metrics. Experiments on Chinese-English and English-French translation show that our approach achieves significant improvements over(More)
While inversion transduction grammar (ITG) is well suited for modeling ordering shifts between languages, how to make applying the two reordering rules (i.e., straight and inverted) dependent on actual blocks being merged remains a challenge. Unlike previous work that only uses boundary words, we propose to use recursive autoencoders to make full use of the(More)