Learn More
In this paper, we aim to provide a point-of-interests (POI) recommendation service for the rapid growing location-based social networks (LBSNs), e.g., Foursquare, Whrrl, etc. Our idea is to explore user preference, social influence and geographical influence for POI recommendations. In addition to deriving user preference based on user-based collaborative(More)
— Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However,(More)
Data gathering is a common but critical operation in many applications of wireless SenSOT networks. Innovative techniques that improve energy eficiency to prolong the network lifetime are highly required. Clustering is an eflective topology control approach in wireless sensor networks, which can increase network scal-ability and lifetime. In this paper, we(More)
Clustering provides an effective method for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques; selecting cluster heads with more residual energy, and rotating cluster heads periodically to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However,(More)
In this paper, we develop a semantic annotation technique for location-based social networks to automatically annotate all places with category tags which are a crucial prerequisite for location search, recommendation services, or data cleaning. Our annotation algorithm learns a binary support vector machine (SVM) classifier for each tag in the tag space to(More)
In this paper, we study the research issues in realizing location recommendation services for large-scale location-based social networks, by exploiting the <i>social</i> and <i>geographical</i> characteristics of users and locations/places. Through our analysis on a dataset collected from Foursquare, a popular location-based social networking system, we(More)
Data gathering is a common but critical operation in many applications of wireless sensor networks. Innovative techniques that improve energy efficiency to prolong the network lifetime are highly required. Clustering is an effective topology control approach in wireless sensor networks, which can increase network scalability and lifetime. In this paper, we(More)
Feature types play a crucial role in understanding and analyzing geographic information. Usually, these types are defined, standardized, and controlled by domain experts and cover geographic features on the mesoscale level, e.g., populated places, forests, or lakes. While feature types also underlie most Location-Based Services (LBS), assigning a consistent(More)
Most previous research on location recommendation services in location-based social networks (LBSNs) makes recommendations without considering where the targeted user is currently located. Such services may recommend a place near her hometown even if the user is traveling out of town. In this paper, we study the issues in making location recommendations for(More)