Learn More
A comparative study of quantitative kinematic data of fore- and hindlimb movements of eight different mammalian species leads to the recognition of basic principles in the locomotion of small therians. The description of kinematics comprises fore- and hindlimb movements as well as sagittal spine movements including displacement patterns of limb segments,(More)
A biologically inspired neural control system has been developed that coordinates a tetrapod trotting gait in the sagittal plane. The developed neuromechanical system is used to explore properties of connections in inter-leg and intra-leg coordination. The neural controller is built with biologically based neurons and synapses, and connections are based on(More)
Studies of microbial sulfate reduction have suggested that the magnitude of sulfur isotope fractionation varies with sulfate concentration. Small apparent sulfur isotope fractionations preserved in Archean rocks have been interpreted as suggesting Archean sulfate concentrations of <200 μm, while larger fractionations thereafter have been interpreted to(More)
Quadrupedal locomotion of squirrel monkeys on small-diameter support was analyzed kinematically and kinetically to specify the timing between limb movements and substrate reaction forces. Limb kinematics was studied cineradiographically, and substrate reaction forces were synchronously recorded. Squirrel monkeys resemble most other quadrupedal primates in(More)
The inner ears of 5 different gerbil species are compared on the basis of cochlear microphonic recordings, serial sections and computerized quantitative reconstructions of the cochleae and their specific morphological structures. The hearing range of most gerbils is below 20 kHz. Some species are extremely sensitive in the frequency range of 1-4 kHz. This(More)
In three species of small therian mammals (Scandentia: Tupaia glis, Rodentia: Galea musteloides and Lagomorpha: Ochotona rufescens) the net joint forces and torques acting during stance phase in the four kinematically relevant joints of the forelimbs (scapular pivot, shoulder joint, elbow joint, wrist joint) and the hindlimbs (hip joint, knee joint, ankle(More)
Two rhamnobiose-lipid preparations have been studied by fast atom bombardment (FAB) tandem mass spectrometry. The principal rhamnobiose-lipids contain the beta-hydroxydecanoyl-beta-hydroxydecanoate Rha-Rha-C10-C10 and the beta-hydroxytetradecanoyl-beta-hydroxytetradecanoate Rha-Rha-C14-C14. Both preparations contain minor components which are heterogenous(More)
Similar in body size, locomotor behaviour and morphology to the last common ancestor of Primates, living small quadrupedal primates provide a convenient model for investigating the evolution of primate locomotion. In this study, the hind limb kinematics of quadrupedal walking in mouse lemurs, brown lemurs, cotton-top tamarins and squirrel monkeys are(More)
During mammalian evolution, fore- and hindlimbs underwent a fundamental reorganization in the transformation from the sprawled to the parasagittal condition. This caused a dissociation between serial and functional homologues. The mobilized scapula functions as the new proximal forelimb element and is functionally analogous to the femur of the hindlimb.(More)
Gait abnormalities have been suggested to provide an objective measure for joint pain in animal models. Here, we aimed to assess whether parameters of gait analysis correlate with measures of pain-related behavior in experimental monoarthritis. For this purpose, antigen-induced arthritis was induced in the left knee joints of 68 female Lewis rats, of which(More)