Learn More
The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains(More)
The CaVbeta subunits of voltage-gated calcium channels regulate these channels in several ways. Here we investigate the role of these auxiliary subunits in the expression of functional N-type channels at the plasma membrane and in the modulation by G-protein-coupled receptors of this neuronal channel. To do so, we mutated tryptophan 391 to an alanine within(More)
Neuropathic pain results from damage to the peripheral sensory nervous system, which may have a number of causes. The calcium channel subunit alpha(2)delta-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of neuropathic pain, and this is causally related to the onset of allodynia, in which a non-noxious stimulus becomes(More)
All auxiliary alpha2delta subunits of voltage-gated Ca2+ (Ca(V)) channels contain an extracellular Von Willebrand factor-A (VWA) domain that, in alpha2delta-1 and -2, has a perfect metal-ion-dependent adhesion site (MIDAS). Modeling of the alpha2delta-2 VWA domain shows it to be highly likely to bind a divalent cation. Mutating the three key MIDAS residues(More)
Voltage-gated calcium channels are thought to exist in the plasma membrane as heteromeric proteins, in which the alpha1 subunit is associated with two auxiliary subunits, the intracellular beta subunit and the alpha(2)delta subunit; both of these subunits influence the trafficking and properties of Ca(V)1 and Ca(V)2 channels. The alpha(2)delta subunits have(More)
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (Ca(V)) channels. Here we show that the functional expression of neuronal N-type Ca(V) channels (Ca(V)2.2) is regulated by fragile X mental(More)
Voltage-gated calcium channels (VGCCs) regulate calcium influx into all excitable cells. In the heart, the main calcium channels are the L-type VGCCs (LTCCs). These are localised to the sarcolemmal membrane, and are hetero-oligomeric complexes comprised of three non-covalently associated polypeptides; alpha1 (CaV1.2), alpha2delta and beta. We recently(More)
The α2δ-1 subunit of voltage-gated calcium channels is upregulated after sensory nerve injury and is also the therapeutic target of gabapentinoid drugs. It is therefore likely to play a key role in the development of neuropathic pain. In this study, we have examined mice in which α2δ-1 gene expression is disrupted, to determine whether α2δ-1 is involved in(More)
Expression of the calcium channels Ca(V)2.1 and Ca(V)2.2 is markedly suppressed by co-expression with truncated constructs containing Domain I. This is the basis for the phenomenon of dominant negative suppression observed for many of the episodic ataxia type 2 mutations in Ca(V)2.1 that predict truncated channels. The process of dominant negative(More)
The mouse mutant ducky and its allele ducky 2J represent a model for absence epilepsy characterized by spike-wave seizures and cerebel-lar ataxia. These mice have mutations in Cacna2d2, which encodes the ␣ 2 ␦-2 calcium channel subunit. Of relevance to the ataxic phenotype, ␣ 2 ␦-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(More)