Manuela Gernert

Learn More
The underlying mechanisms of various types of hereditary dystonia, a common movement disorder, are still unknown. Recent findings in a genetic model of a type of paroxysmal dystonia, the dt(sz) mutant hamster, pointed to striatal dysfunctions. In the present study, immunhistochemical experiments demonstrated a marked decrease in the number and density of(More)
In epilepsy research, there is a growing interest in the role of the piriform cortex (PC) in the development and maintenance of limbic kindling and other types of limbic epileptogenesis leading to complex partial seizures. Neurophysiological studies on PC or amygdala-PC slice preparations from kindled rats showed that kindling of the amygdala induces(More)
The past decades have brought several advances to the treatment of epilepsy. However, despite the continued development and release of new antiepileptic drugs (AEDs), more than one-third of patients are resistant to pharmacological treatment. Furthermore, current AEDs do not prevent the development and progression of epilepsy. Thus, there is an urgent need(More)
The substantia nigra pars reticulata is thought to control the spread of seizures in various seizure models. Potentiation of gamma-aminobutyrate (GABA)-mediated transmission in this region by intranigral administration of drugs such as muscimol has been shown to inhibit seizure propagation in such models, including the kindling model of epilepsy. More(More)
There is increasing evidence that developmental anomalies of cerebral asymmetry are involved in the etiology of psychiatric disorders, including schizophrenia, depression and anxiety. Thus, rodents with abnormal cerebral lateralization are interesting tools to study the association between such anomalies and behavioral dysfunction. The most studied(More)
Recent studies have shown a dramatically decreased spontaneous discharge rate of entopeduncular neurons in a unique animal model of idiopathic paroxysmal dystonia, the dt(sz) mutant hamster. These changes were found in animals at the age at which the most marked expression of dystonia is usually observed. In this rodent model, the age-dependent(More)
A decreased activity of basal ganglia output neurons is thought to underlie idiopathic dystonias and other hyperkinetic movement disorders. We found recently a reduced spontaneous discharge rate of entopeduncular neurons (internal globus pallidus in primates) in dt(sz) hamsters, an unique model for idiopathic paroxysmal dystonia in which stress-inducible(More)
The circling rat is an autosomal recessive mutant (homozygous ci2/ci2) characterized by lateralized rotational behavior, locomotor hyperactivity, ataxia, stereotypic head movements, and deafness. Previous neurochemical investigations showed that ci2 rats of both genders have a lower tissue content of dopamine in the striatum ipsilateral to the preferred(More)
The pathophysiology of idiopathic dystonia, characterized by sustained twisting movements and postures, is still unknown. Clinically, however, the basal ganglia are thought to be the main causative origin of idiopathic dystonia. In the dtsz hamster, a genetic animal model for idiopathic paroxysmal dystonia, the attacks occur in response to mild stress and(More)
Vigabatrin is a rationally developed antiepileptic drug, which acts by increasing GABA levels in the brain by irreversibly inhibiting GABA degradation. However, its clinical use in epilepsy is restricted by severe side effects, including vision loss, which is thought to be a consequence of drug exposure of the retina and nonepileptic brain regions. Targeted(More)