Learn More
Resistin and high glucose (HG) are concomitantly present at elevated concentration in diabetic's plasma; both are pro-inflammatory agents acting on vascular cells by mechanisms that are not fully understood. We questioned whether resistin and HG affect the expression of major adhesion molecules, P-selectin and fractalkine in human endothelial cells (HEC).(More)
OBJECTIVE In atherosclerotic lesions, fractalkine (CX3CL1) and its receptor (CX3CR1) expressed by smooth muscle cells (SMC) and monocytes/macrophages, mediate the heterotypic anchorage and chemotaxis of these cells. We questioned whether, during the close interaction of monocytes with SMC, the CX3CL1/CX3CR1 pair modulates the expression of pro-atherogenic(More)
Monocytes/macrophages are key players throughout atheroma development. The aim of this study was to determine the role of macrophages in lesion formation in heart valves in hyperlipidemia. We examined whether systemic depletion of monocytes/macrophages had a beneficial or adverse effect on the development of lesions in hyperlipemic hamsters injected twice(More)
Resistin is a significant local and systemic regulatory cytokine involved in inflammation. Suppressors of cytokine signaling (SOCS) proteins are intracellular regulators of receptor signal transduction induced by several cytokines in a cytokine and cell specific manner. Resistin up-regulates SOCS3 expression in mice adipocytes but it is not known whether(More)
In the atherosclerotic plaque, smooth muscle cells (SMC) acquire an inflammatory phenotype. Resistin and fractalkine (CX3CL1) are found in human atheroma and not in normal arteries. CX3CL1 and CX3CR1 are predominately associated with SMC. We have questioned whether resistin has a role in the expression of CX3CL1 and CX3CR1 in SMC thus contributing to the(More)
The major complication of diabetes mellitus is accelerated atherosclerosis that entails an inflammatory process, in which fractalkine and monocyte chemotactic protein-1 (MCP-1) play a key role. We investigated the effect of diabetes-associated high glucose (HG) on these chemokines and signalling mechanisms involved in human aortic smooth muscle cells (SMC).(More)
The cytokine resistin and the chemokine fractalkine (FKN) were found at increased levels in human atherosclerotic plaque, in the subendothelium, but their role in this location still needs to be characterized. Recently, high local resistin in the arterial vessel wall was shown to contribute to an enhanced accumulation of macrophages by mechanisms that need(More)
Resistin has emerged as a significant local and systemic regulatory cytokine involved in inflammation. In diabetic patients, the serum resistin level is increased, monocytes/macrophages being an important source of resistin production. We therefore hypothesize that high glucose concentrations (HG) regulate resistin expression in human monocytes. Our aim has(More)
During the early phase of atherosclerosis, monocytes attach to and migrate through the vessel wall where they activate and communicate with smooth muscle cells (SMC) affecting plaque progression by largely unknown mechanisms. Activation of STAT3 transcription factor is suggested to be critically involved in dedifferentiation, migration, and proliferation of(More)
Resistin is a cytokine which plays an important role in cardiovascular disease by influencing systemic inflammation and endothelial activation. In human endothelial cells (HEC) it increases the expression of P-selectin and fractalkine, and enhances monocyte adhesion by antioxidant mechanisms. This study investigated whether the natural antioxidants curcumin(More)