Learn More
Recent evidence has revealed the occurrence of an apoptotic phenotype in Saccharomyces cerevisiae that is inducible with oxidative stress. Here, exposure of S. cerevisiae to 20-200 mM acetic acid for 200 min at pH 3.0 resulted in cell death. Yeast mortality induced by 120-200 mM acid was not inhibited by cycloheximide and was accompanied by ultrastructural(More)
Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in(More)
Evidence is presented that mitochondria are implicated in the previously described programmed cell death (PCD) process induced by acetic acid in Saccharomyces cerevisiae. In yeast cells undergoing a PCD process induced by acetic acid, translocation of cytochrome c (CytC) to the cytosol and reactive oxygen species production, two events known to be(More)
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic(More)
In yeast the use of rhodamine 123 (Rh123) has been restricted to the evaluation of mitochondrial respiratory function including the discrimination between respiratory-competent and -deficient cells. This study describes the optimization and validation of a low-concentration Rh123 staining protocol for the flow-cytometric assessment of mitochondrial membrane(More)
Zygosaccharomyces bailii ISA 1307 and the type strain of this spoilage yeast show a diploid DNA content. Together with a rather peculiar life cycle in which mitotic but no meiotic spores appear to be formed, the diploid DNA content explains the observed difficulties in obtaining auxotrophic mutants. Mitotic chromosome loss induced by benomyl and selection(More)
A collection of yeasts, isolated mostly from spoiled wines, was used in order to develop a differential medium for Zygosaccharomyces bailii. The 118 selected strains of 21 species differed in their origin and resistance to preservatives and belonged to the genera Pichia, Torulaspora, Dekkera, Debaryomyces, Saccharomycodes, Issatchenkia, Kluyveromyces,(More)
Cyanide-resistant respiration (CRR) is a widespread metabolic pathway among yeasts, that involves a mitochondrial alternative oxidase sensitive to salicylhydroxamic acid (SHAM). The physiological role of this pathway has been obscure. We used the yeasts Debaryomyces hansenii and Pichia membranifaciens to elucidate the involvement of CRR in energy(More)
Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects(More)
During the last years, several reports described an apoptosis-like programmed cell death process in yeast in response to different environmental aggressions. Here, evidence is presented that hyperosmotic stress caused by high glucose or sorbitol concentrations in culture medium induces in Saccharomyces cerevisiae a cell death process accompanied by(More)