Learn More
Graphics Processing Units (GPUs) have evolved into highly parallel and fully programmable architecture over the past five years, and the advent of CUDA has facilitated their application to many real-world applications. In this paper, we deal with a GPU implementation of Ant Colony Optimization (ACO), a population-based optimization method which comprises(More)
Vienna Fortran, High Performance Fortran (HPF) and other data parallel languages have been introduced to allow the programming of massively parallel distributed-memory machines (DMMP) at a relatively high level of abstraction based on the SPMD paradigm. Their main features include directives to express the distribution of data and computations across the(More)
Microscopic imaging is an important tool for characterizing tissue morphology and pathology. 3D reconstruction and visualization of large sample tissue structure requires registration of large sets of high-resolution images. However, the scale of this problem presents a challenge for automatic registration methods. In this paper we present a novel method(More)
—Ant Colony Optimisation (ACO) is an effective population-based meta-heuristic for the solution of a wide variety of problems. As a population-based algorithm, its computation is intrinsically massively parallel, and it is therefore theoretically well-suited for implementation on Graphics Processing Units (GPUs). The ACO algorithm comprises two main stages:(More)
We present a novel use of GPUs (Graphics Processing Units) for the analysis of histopathological images of neuroblastoma, a childhood cancer. Thanks to the advent of modern mi-croscopy scanners, whole-slide histopathological images can now be acquired but the computational costs to analyze these images using sophisticated image analysis algorithms are(More)
We are currently witnessing the emergence of two paradigms in parallel computing: streaming processing and multi-core CPUs. Represented by solid commercial products widely available in commodity PCs, GPUs and multi-core CPUs bring together an unprecedented combination of high performance at low cost. The scientific computing community needs to keep pace(More)
High-level data-parallel languages such as Vienna Fortran and High Performance Fortran (HPF) have been introduced to allow the programming of massively parallel distributed-memory machines at a relatively high level of abstraction, based on the Single-Program-Multiple-Data (SPMD) paradigm. Their main features include mechanisms for expressing the(More)
This paper describes new compiler and run-time techniques to handle array accesses involving several levels of indirec-tion such as those arising in sparse and irregular problems. The lack of information at compile-time in such problems has typically required the insertion of expensive runtime support. We propose new data distributions which can be used(More)