Manuel Souto

  • Citations Per Year
Learn More
An electron donor-acceptor dyad based on a polychlorotriphenylmethyl (PTM) radical subunit linked to a tetrathiafulvalene (TTF) unit through a π-conjugated N-phenyl-pyrrole-vinylene bridge has been synthesized and characterized. The intramolecular electron transfer process and magnetic properties of the radical dyad have been evaluated by cyclic(More)
During the last years there has been a high interest in the development of new purelyorganic single-component conductors. Very recently, we have reported a new neutral radical conductor based on the perchlorotriphenylmethyl (PTM) radical moiety linked to a monopyrrolotetrathiafulvalene (MPTTF) unit by a π-conjugated bridge (1). Interestingly, this system(More)
The understanding of the crystal structure of organic compounds, and its relationship to their physical properties, have become essential to design new advanced molecular materials. In this context, we present a computational study devoted to rationalize the different crystal packing displayed by two closely related organic systems based on the TTF-PTM dyad(More)
The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was(More)
An organic switch: An open-shell dyad, consisting of an electron acceptor perchlorotriphenylmethyl radical unit linked to an electron π-donor tetrathiafulvalene unit through a vinylene π-bridge, was synthesized (see picture). The self-assembly of the dyad in solution induced by its intramolecular electron transfer was studied.
This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top(More)
Organic ferroelectric materials operating at room temperature are in demand in the emerging field of lightweight, flexible and environmentally friendly electronics. Tayi et al.1 reported roomtemperature ferroelectricity in organic mixed-stack charge-transfer crystals, produced using a supramolecular design concept—the lock-arm supra molecular ordering(More)
  • Hans Vossensteyn, Maarja Soo, +13 authors Cristina Torrecillas
  • 2008
This study explores the impact of the ERASMUS programme on quality improvement in European higher education in particular in the areas of teaching, research, student services and the openness to society with a focus at the institutional and system level. The study puts an emphasis on the identification of the contribution of ERASMUS to the development of(More)
Three conjugated donor-π-acceptor radical systems (1 a-1 c) were prepared by bridging a tetrathiafulvalene (TTF) electron-donor unit to a polychlorotriphenylmethyl (PTM) electron-acceptor radical through vinylene units of different lengths. The dependence of the intramolecular charge transfer on the length of the conjugated bridge has been analyzed by(More)
An extensive investigation of aggregation phenomena occurring in solution for a family of electron donor-acceptor derivatives, based on polychlorotriphenylmethyl radicals (PTM) linked via a vinylene-bridge to tetrathiafulvalene (TTF) units, is presented. A large set of temperature and/or concentration dependent optical absorption and electron spin resonance(More)