Manuel Salmerón-Sánchez

Learn More
The influence of surface chemistry-substrates with controlled surface density of -OH groups-on fibronectin (FN) conformation and distribution is directly observed by atomic force microscopy (AFM). FN fibrillogenesis, which is known to be a process triggered by interaction with integrins, is shown in our case to be induced by the substrate (in absence of(More)
Bridging of long peripheral nerve gaps remains a significant clinical challenge. Electrospun nanofibers have been used to direct and enhance neurite extension in vitro and in vivo. While it is well established that oriented fibers influence neurite outgrowth and Schwann cell migration, the mechanisms by which they influence these cells are still unclear. In(More)
Fibronectin (FN) is a ubiquitous extracellular matrix protein (ECM) protein that is organized into fibrillar networks by cells through an integrin-mediated process that involves contractile forces. This assembly allows for the unfolding of the FN molecule, exposing cryptic domains that are not available in the native globular FN structure and activating(More)
Protein remodeling at the cell-material interface is an important phenomenon that should be incorporated into the design of advanced biomaterials for tissue engineering. In this work, we address the relationship between fibronectin (FN) activity at the material interface and remodeling, including proteolytic cascades. To do so, we studied FN adsorption on(More)
Detailed knowledge of the porous architecture of synthetic scaffolds for tissue engineering, their mechanical properties, and their interrelationship was obtained in a nondestructive manner. Image analysis of microcomputed tomography (microCT) sections of different scaffolds was done. The three-dimensional (3D) reconstruction of the scaffold allows one to(More)
Fibronectin (FN) assembles into fibrillar networks by cells through an integrin-dependent mechanism. We have recently shown that simple FN adsorption onto poly(ethyl acrylate) surfaces (PEA), but not control polymer (poly(methyl acrylate), PMA), also triggered FN organization into a physiological fibrillar network. FN fibrils exhibited enhanced biological(More)
Cells behave differently between bidimensional (2D) and tridimensional (3D) environments. While most of the in vitro cultures are 2D, most of the in vivo extracellular matrices are 3D, which encourages the development of more relevant culture conditions, seeking to provide more physiological models for biomedicine (e.g., cancer, drug discovery and tissue(More)
While most of the in vivo extracellular matrices are 3D, most of the in vitro cultures are 2D--where only ventral adhesion is permitted--thus modifying cell behavior as a way to self-adaptation to this unnatural environment. We hypothesize that the excitation of dorsal receptors in cells already attached on a 2D surface (sandwich culture) could cover the(More)
We have synthesized methacrylate-endcapped caprolactone networks with tailored water sorption ability, poly(CLMA-co-HEA), in the form of three-dimensional (3D) scaffolds with the same architecture but exhibiting different hydrophilicity character (x(HEA)=0, 0.3, 0.5), and we investigated the interaction of goat bone marrow stromal cells (GBMSCs) with such(More)
A family of polymer substrates which consists of a vinyl backbone chain with the side groups -COO(CH(2))(x)H, with x = 1, 2, 4, was prepared. Substrates with similar chemical groups but decreasing stiffness, characterized by their elastic modulus at 37 °C, as well as surface mobility, characterized by the glass transition temperature, were obtained. We have(More)