Manuel Salmerón-Sánchez

Learn More
Protein remodeling at the cell-material interface is an important phenomenon that should be incorporated into the design of advanced biomaterials for tissue engineering. In this work, we address the relationship between fibronectin (FN) activity at the material interface and remodeling, including proteolytic cascades. To do so, we studied FN adsorption on(More)
We present a detailed characterization of fibronectin (FN) adsorption and cell adhesion on poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA), two polymers with very similar physicochemical properties and chemical structure, which differ in one single methyl group in the lateral chain of the polymer. The globular solution conformation of FN was(More)
BACKGROUND The cell-material interaction is a complex bi-directional and dynamic process that mimics to a certain extent the natural interactions of cells with the extracellular matrix. Cells tend to adhere and rearrange adsorbed extracellular matrix (ECM) proteins on the material surface in a fibril-like pattern. Afterwards, the ECM undergoes proteolytic(More)
We have synthesized methacrylate-endcapped caprolactone networks with tailored water sorption ability, poly(CLMA-co-HEA), in the form of three-dimensional (3D) scaffolds with the same architecture but exhibiting different hydrophilicity character (x(HEA)=0, 0.3, 0.5), and we investigated the interaction of goat bone marrow stromal cells (GBMSCs) with such(More)
Growth factors (GFs) are powerful signaling molecules with the potential to drive regenerative strategies, including bone repair and vascularization. However, GFs are typically delivered in soluble format at supraphysiological doses because of rapid clearance and limited therapeutic impact. These high doses have serious side effects and are expensive.(More)
Cells behave differently between bidimensional (2D) and tridimensional (3D) environments. While most of the in vitro cultures are 2D, most of the in vivo extracellular matrices are 3D, which encourages the development of more relevant culture conditions, seeking to provide more physiological models for biomedicine (e.g., cancer, drug discovery and tissue(More)
Cells, by interacting with surfaces indirectly through a layer of extracellular matrix proteins, can respond to a variety of physical properties, such as topography or stiffness. Polymer surface mobility is another physical property that is less well understood but has been indicated to hold the potential to modulate cell behavior. Polymer mobility is(More)
Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII(7-10) fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII(7-10) fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling(More)
We have engineered polymer-based microenvironments that promote vasculogenesis both in vitro and in vivo through synergistic integrin-growth factor receptor signalling. Poly(ethyl acrylate) (PEA) triggers spontaneous organization of fibronectin (FN) into nanonetworks which provide availability of critical binding domains. Importantly, the growth factor(More)
In culture isolated bone marrow mesenchymal stem cells (more precisely termed skeletal stem cells, SSCs) spontaneously differentiate into fibroblasts, preventing the growth of large numbers of multipotent SSCs for use in regenerative medicine. However, the mechanisms that regulate the expansion of SSCs, while maintaining multipotency and preventing(More)