Manuel Sánchez del Río

Learn More
A new version of the popular X-ray tracing code SHADOW is presented. An important step has been made in restructuring the code following new computer engineering standards, ending with a modular Fortran 2003 structure and an application programming interface (API). The new code has been designed to be compatible with the original file-oriented SHADOW(More)
The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young's modulus, the shear modulus and Poisson's ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for(More)
The performance of a cryogenically cooled double-crystal silicon monochromator was studied under high-heat-load conditions with total absorbed powers and power densities ranging from 8 to 780 W and from 8 to 240 W mm(-2), respectively. When the temperature of the first crystal is maintained close to the temperature of zero thermal expansion of silicon, the(More)
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of(More)
Aspherical surfaces required for focusing collimated and divergent synchrotron beams using a single refractive element (lens) are reviewed. The Cartesian oval, a lens shape that produces perfect point-to-point focusing for monochromatic radiation, is studied in the context of X-ray beamlines. Optical surfaces that approximate ideal shapes are compared.(More)
A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The `Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of(More)
Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of(More)
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation(More)
Some points concerning the characteristics of the X-ray simulation code SHADOW [Welnak et al. (1994). Nucl. Instrum. Methods, A347, 344-347] are clarified which are not correctly mentioned by Yamada et al. [J. Synchrotron Rad. (2001), 8, 1047-1050]. It is shown that, contrary to the Authors' statement, some functionality of their new program is not(More)
We report on the development and characterization of a zirconium Kα imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R(int)) and temperature dependent collection efficiency (η(Te)) to(More)