Manuel Hiß

Learn More
The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as(More)
The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary ('ontology') of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and(More)
The biotechnological production of proteins is currently achieved via expression systems derived from different lineages. In the past years transgenic plants have proven to be able to compete with bacteria or mammalian cell systems. Gene engineering approaches exist to raise yields by controlling mandatory processes in the course of biopharmaceutical(More)
Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we(More)
Rich ecotype collections are used for several plant models to unravel the molecular causes of phenotypic differences, and to investigate the effects of environmental adaption and acclimation. For the model moss Physcomitrella patens collections of accessions are available, and have been used for phylogenetic and taxonomic studies, for example, but few have(More)
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are key factors for site-specific RNA editing, converting cytidines into uridines in plant mitochondria and chloroplasts. All editing factors in the model moss Physcomitrella patens have a C-terminal DYW domain with similarity to cytidine deaminase. However, numerous editing factors in flowering plants(More)
Across the plant kingdom, phytochrome (PHY) photoreceptors play an important role during adaptive and developmental responses to light. In Arabidopsis thaliana, light-activated PHYs accumulate in the nucleus, where they regulate downstream signaling components, such as phytochrome interacting factors (PIFs). PIFs are transcription factors that act as(More)
  • 1