Learn More
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the(More)
Time plays an essential role in the diffusion of information , influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected – but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest(More)
Diffusion of information, spread of rumors and infectious diseases are all instances of stochastic processes that occur over the edges of an underlying network. Many times networks over which contagions spread are unobserved, and such networks are often dynamic and change over time. In this paper, we investigate the problem of inferring dynamic networks(More)
If a piece of information is released from a media site, can we predict whether it may spread to one million web pages, in a month ? This influence estimation problem is very challenging since both the time-sensitive nature of the task and the requirement of scalability need to be addressed simultaneously. In this paper, we propose a randomized algorithm(More)
Diffusion and propagation of information, influence and diseases take place over increasingly larger networks. We observe when a node copies information, makes a decision or becomes infected but networks are often hidden or unob-served. Since networks are highly dynamic, changing and growing rapidly, we only observe a relatively small set of cascades before(More)
Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes,(More)
Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the(More)
Photographs taken with long exposure or high ISO setting may contain substantial amounts of noise, drastically reducing the Signal-To-Noise Ratio (SNR). This paper presents a novel optimization approach for denoising. It is based on a library of dark frames previously taken under varying conditions of temperature, ISO setting and exposure time, and a(More)
The problem of finding the optimal set of source nodes in a diffusion network that maximizes the spread of information, influence, and diseases in a limited amount of time depends dramatically on the underlying temporal dynamics of the network. However, this still remains largely unexplored to date. To this end, given a network and its temporal dynamics, we(More)
Networks provide a 'skeleton' for the spread of contagions, like, information, ideas, behaviors and diseases. Many times networks over which contagions diffuse are unobserved and need to be inferred. Here we apply survival theory to develop general additive and multiplicative risk models under which the network inference problems can be solved efficiently(More)